Previous Page 2

Displaying 21 – 31 of 31

Showing per page

The topological asymptotic expansion for the Quasi-Stokes problem

Maatoug Hassine, Mohamed Masmoudi (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we propose a topological sensitivity analysis for the Quasi-Stokes equations. It consists in an asymptotic expansion of a cost function with respect to the creation of a small hole in the domain. The leading term of this expansion is related to the principal part of the operator. The theoretical part of this work is discussed in both two and three dimensional cases. In the numerical part, we use this approach to optimize the locations of a fixed number of air injectors in an eutrophized...

The topological asymptotic expansion for the Quasi-Stokes problem

Maatoug Hassine, Mohamed Masmoudi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we propose a topological sensitivity analysis for the Quasi-Stokes equations. It consists in an asymptotic expansion of a cost function with respect to the creation of a small hole in the domain. The leading term of this expansion is related to the principal part of the operator. The theoretical part of this work is discussed in both two and three dimensional cases. In the numerical part, we use this approach to optimize the locations of a fixed number of air injectors in an eutrophized...

The topological asymptotic for the Navier-Stokes equations

Samuel Amstutz (2005)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional...

The topological asymptotic for the Navier-Stokes equations

Samuel Amstutz (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional...

Topological asymptotic analysis of the Kirchhoff plate bending problem

Samuel Amstutz, Antonio A. Novotny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...

Topological asymptotic analysis of the Kirchhoff plate bending problem

Samuel Amstutz, Antonio A. Novotny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...

Topological sensitivity analysis for time-dependent problems

Boris Vexler, Takéo Takahashi, Samuel Amstutz (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation...

Topological sensitivity analysis for time-dependent problems

Samuel Amstutz, Takéo Takahashi, Boris Vexler (2007)

ESAIM: Control, Optimisation and Calculus of Variations

The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation...

Topology optimization of quasistatic contact problems

Andrzej Myśliński (2012)

International Journal of Applied Mathematics and Computer Science

This paper deals with the formulation of a necessary optimality condition for a topology optimization problem for an elastic contact problem with Tresca friction. In the paper a quasistatic contact model is considered, rather than a stationary one used in the literature. The functional approximating the normal contact stress is chosen as the shape functional. The aim of the topology optimization problem considered is to find the optimal material distribution inside a design domain occupied by the...

Un algorithme d'identification de frontières soumises à des conditions aux limites de Signorini

Slim Chaabane, Mohamed Jaoua (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This work deals with a non linear inverse problem of reconstructing an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type, by using boundary measurements. The problem is turned into an optimal shape design one, by constructing a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary. Furthermore, we prove that the derivative of this cost function with respect to a direction θ depends only on the state u0, and not...

Currently displaying 21 – 31 of 31

Previous Page 2