I geometri italiani e il problema dei fondamenti (1889-1899)
L’Académie royale des sciences frappe d’interdit la quadrature du cercle en 1775. Au travers d’exemples issus de manuscrits de l’époque, nous replaçons dans leurs contextes historiques les arguments présentés par l’Académie pour justifier sa décision : à savoir le mythe d’un prix pour récompenser la découverte de la quadrature du cercle et une conviction, issue de l’expérience, de l’inutilité de critiquer les quadratures. Nous donnons un aperçu de l’importance de la place occupée par les écrits...
Avant leur célèbre polémique sur la logistique, Poincaré et Russell s’étaient déjà publiquement opposés sur la question du statut des axiomes de la géométrie. Les débats philosophiques de la fin du xixe siècle autour de la géométrie et de la théorie de l’espace influent de manière significative sur la conception et le développement de la géométrie. Le but de cet article est de montrer comment les mathématiques sont mises au service des thèses soutenues par Poincaré et Russell et d’analyser quelle...
Comment introduire de la généralité dans un monde géométrique où une foule de vérités particulières, établies par des méthodes ad hoc, restent sans liaison entre elles et forment donc un ensemble sans organisation ? En suivant les divers traitements d’un unique théorème, appelé aujourd’hui le théorème de Menelaus, le présent article vise à examiner comment les travaux géométriques de Lazare Carnot ont indiqué, aux géomètres comme Poncelet ou Chasles qui posaient cette question, diverses pistes pour...
Colin MacLaurin (1698–1746) est surtout connu pour les formules qui portent son nom ou pour son ouvrage majeur, le Treatise of Fluxions. Pourtant, il est avant tout un géomètre. En effet, sa production de jeunesse est complètement tournée vers la géométrie, en particulier, la Geometria Organica parue en 1720 et le De Linearum Geometricarum Proprietatibus Generalibus Tractatus dont le début de l’écriture commence en 1721 et qui est paru de façon posthume en 1748. On s’intéressera plus particulièrement...
On étudie quelques étapes du développement du huitième axiome d’Euclide (« Le tout est plus grand que la partie » ) pendant le xixe et le xxe siècle. L’histoire de cet axiome est liée, d’une part, au problème de la définition de la notion alors fondamentale de « grandeur » et, d’autre part, au problème de la définition de la notion d’« aire d’un polygone » .
Friedrich Schur (1856-1932) a accompli d’importantes recherches sur les fondements de la géométrie à la même époque que Hilbert. Elles ont trouvé leur aboutissement dans un livre publié en 1909 et intitulé, comme celui de Hilbert, Grundlagen der Geometrie. La construction axiomatique exposée par Schur est originale et différente de celle de Hilbert. Elle trouve son origine dans les travaux de Pasch et Peano. Elle prend comme point de départ la géométrie projective et accorde une place centrale à...
Maria Gaetana Agnesi (1718-1799) měla od malička pověst zázračného dítěte. Díky své píli a velké vůli napsala velmi dobře hodnocenou učebnici a stala se zřejmě první ženou, která publikovala matematickou knihu pod svým jménem. Proslavila se studiem křivky, která je dnes pojmenována Witch of Agnesi. Své matematické bádání sama ukončila již krátce po třicátých narozeninách. Dobrovolně se vzdala i života v hmotném bohatství, aby se mohla věnovat starým, nemocným a chudým lidem.
John Wallis publie entre 1669 et 1671 les trois parties de son traité de Mécanique, qu’il caractérise lui-même comme un traité de géométrie. La mécanique est située à l’intérieur de la géométrie, dont elle partage les méthodes, puisque les propriétés du mouvement sont démontrées more geometrico. Wallis veut fonder la mécanique sur de nouvelles bases. Pour cela, il y applique une méthode qu’il a élaborée dans l’Arithmetica infinitorum, en partant de la méthode des indivisibles de Cavalieri, et qu’il...