Affine and projective generalization of Wallace lines.
The concept of the affine regular icosahedron and affine regular octahedron in a general GS-quasigroup will be introduced in this paper. The theorem of the unique determination of the affine regular icosahedron by means of its four vertices which satisfy certain conditions will be proved. The connection between affine regular icosahedron and affine regular octahedron in a general GS-quasigroup will be researched. The geometrical representation of the introduced concepts and relations between them...
The construction of any finite translation plane depends on the appropriate determination of a partition of a Galois field , together with a set of automorphisms of as a vector space. In this paper we obtain sufficient conditions on and , so that a translation plane is produced. They are also necessary conditions when . Particularly, we examine the case where is a two-dimensional vector space. We prove that no translation planes are constructible by a single automorphism, other than...
We present a survey on classical problems of Galois geometries. More precisely we discuss some problems and results about ovals, hyperovals, caps, maximal arcs and blocking sets in projective planes and spaces over Galois fields.
The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshkoff and Lubomir Tschakalo ff , Sofia, July, 2006.Two heuristic algorithms (M65 and M52) for finding respectively unitals and maximal arcs in projective planes of order 16 are described. The exact algorithms based on exhaustive search are impractical because of the combinatorial explosion (huge number of combinations to be checked). Algorithms M65 and M52 use unions of orbits...