Representation of curves of constant width in the hyperbolic plane.
For each integer and each finite graph , we construct a Coxeter group and a non positively curved polygonal complex on which acts properly cocompactly, such that each polygon of has edges, and the link of each vertex of is isomorphic to . If is a “generalized -gon”, then is a Tits building modelled on a reflection group of the hyperbolic plane. We give a condition on for to be non enumerable (which is satisfied if is a thick classical generalized -gon). On the other hand,...
We describe a framework for robust shape reconstruction from raw point sets, based on optimal transportation between measures, where the input point sets are seen as distribution of masses. In addition to robustness to defect-laden point sets, hampered with noise and outliers, our approach can reconstruct smooth closed shapes as well as piecewise smooth shapes with boundaries.
Let CRCr denote an annulus formed by two non-concentric circles CR, Cr in the Euclidean plane. We prove that if Poncelet’s closure theorem holds for k-gons circuminscribed to CRCr, then there exist circles inside this annulus which satisfy Poncelet’s closure theorem together with Cr, with ngons for any n > k.
The goal of this article is to formalize Ceva’s theorem that is in the [8] on the web. Alongside with it formalizations of Routh’s, Menelaus’ and generalized form of Ceva’s theorem itself are provided.