Displaying 101 – 120 of 238

Showing per page

The n -Point Condition and Rough CAT(0)

Stephen M. Buckley, Bruce Hanson (2013)

Analysis and Geometry in Metric Spaces

We show that for n ≥ 5, a length space (X; d) satisfies a rough n-point condition if and only if it is rough CAT(0). As a consequence, we show that the class of rough CAT(0) spaces is closed under reasonably general limit processes such as pointed and unpointed Gromov-Hausdorff limits and ultralimits.

The Nonexistence of some Griesmer Arcs in PG(4, 5)

Landjev, Ivan, Rousseva, Assia (2008)

Serdica Journal of Computing

In this paper, we prove the nonexistence of arcs with parameters (232, 48) and (233, 48) in PG(4,5). This rules out the existence of linear codes with parameters [232,5,184] and [233,5,185] over the field with five elements and improves two instances in the recent tables by Maruta, Shinohara and Kikui of optimal codes of dimension 5 over F5.

Currently displaying 101 – 120 of 238