Approximating the Volume of Convex Bodies.
There is a constant c such that for every n ∈ ℕ, there is an Nₙ so that for every N≥ Nₙ there is a polytope P in ℝⁿ with N vertices and where B₂ⁿ denotes the Euclidean unit ball of dimension n.
Problems related to the random approximation of convex bodies fall into the field of integral geometry and geometric probabilities. The aim of this paper is to give a survey of known results about the stochastic model that has received special attention in the literature and that can be described as follows:Let K be a d-dimensional convex body in Eucliden space Rd, d ≥ 2. Denote by Hn the convex hull of n independent random points X1, ..., Xn distributed identically and uniformly in the interior...
To any compactly supported, area preserving, piecewise linear homeomorphism of the plane is associated a relation in of the smallest field whose elements are needed to write the homeomorphism.Using a formula of J. Morita, we show how to calculate the relation, in some simple cases. As applications, a “reciprocity” formula for a pair of triangles in the plane, and some explicit elements of torsion in of certain function fields are found.