Dilated Sets and Characterizations of Simplexes.
We study Banach spaces with directionally asymptotically controlled ellipsoid-approximations of the unit ball in finite-dimensional sections. Here these ellipsoids are the unique minimum volume ellipsoids, which contain the unit ball of the corresponding finite-dimensional subspace. The directional control here means that we evaluate the ellipsoids by means of a given functional of the dual space. The term 'asymptotical' refers to the fact that we take 'lim sup' over finite-dimensional subspaces. ...
We introduce the convex cone constituted by the directions of majoration of a quasiconvex function. This cone is used to formulate a qualification condition ensuring the epiconvergence of a sequence of general quasiconvex marginal functions in finite dimensional spaces.
Let be a flat surface of genus with cone type singularities. Given a bipartite graph isoradially embedded in , we define discrete analogs of the Dirac operators on . These discrete objects are then shown to converge to the continuous ones, in some appropriate sense. Finally, we obtain necessary and sufficient conditions on the pair for these discrete Dirac operators to be Kasteleyn matrices of the graph . As a consequence, if these conditions are met, the partition function of the dimer...
A classification of all possible icosahedral viral capsids is proposed. It takes into account the diversity of hexamers’ compositions, leading to definite capsid size.We showhowthe self-organization of observed capsids during their production results from definite symmetries of constituting hexamers. The division of all icosahedral capsids into four symmetry classes is given. New subclasses implementing the action of symmetry groups Z2, Z3 and S3 are found and described. They concern special cases...
Let E be a Banach space and let and denote the space of all Baire-one and affine Baire-one functions on the dual unit ball , respectively. We show that there exists a separable L₁-predual E such that there is no quantitative relation between and , where f is an affine function on . If the Banach space E satisfies some additional assumption, we prove the existence of some such dependence.