Improving dense packings of equal disks in a square.
Hedgehogs are a natural generalization of convex bodies of class C+2. After recalling some basic facts concerning this generalization, we use the notion of index to study differential and integral geometries of hedgehogs.As applications, we prove a particular case of the Tennis Ball Theorem and a property of normals to a plane convex body of constant width.
La théorie des corps convexes a commencé à la fin du xixe siècle avec l’inégalité de Brunn, généralisée ensuite sous la forme de l’inégalité de Brunn-Minkowski-Lusternik, qui s’applique à des ensembles non convexes. Ce thème a depuis longtemps des contacts avec les problèmes isopérimétriques et avec des inégalités d’Analyse telle que les plongements de Sobolev. On développera quelques aspects plus récents des inégalités géométriques, dont certains sont liés à la technique du transport de mesure,...
We establish some inequalities for general width-integrals of Blaschke-Minkowski homomorphisms. As applications, inequalities for width-integrals of projection bodies are derived.
We establish Brunn-Minkowski type inequalities for radial Blaschke-Minkowski homomorphisms, which in special cases yield some new results for intersection bodies. Moreover, we obtain two monotonicity inequalities for radial Blaschke-Minkowski homomorphisms.
We extend Kahane-Khinchin type inequalities to the case p > -2. As an application we verify the slicing problem for the unit balls of finite-dimensional spaces that embed in , p > -2.