Displaying 1001 – 1020 of 2516

Showing per page

Isocanted alcoved polytopes

María Jesús de la Puente, Pedro Luis Clavería (2020)

Applications of Mathematics

Through tropical normal idempotent matrices, we introduce isocanted alcoved polytopes, computing their f -vectors and checking the validity of the following five conjectures: Bárány, unimodality, 3 d , flag and cubical lower bound (CLBC). Isocanted alcoved polytopes are centrally symmetric, almost simple cubical polytopes. They are zonotopes. We show that, for each dimension, there is a unique combinatorial type. In dimension d , an isocanted alcoved polytope has 2 d + 1 - 2 vertices, its face lattice is the lattice...

Isometric classification of Sobolev spaces on graphs

M. I. Ostrovskii (2007)

Colloquium Mathematicae

Isometric Sobolev spaces on finite graphs are characterized. The characterization implies that the following analogue of the Banach-Stone theorem is valid: if two Sobolev spaces on 3-connected graphs, with the exponent which is not an even integer, are isometric, then the corresponding graphs are isomorphic. As a corollary it is shown that for each finite group and each p which is not an even integer, there exists n ∈ ℕ and a subspace L p whose group of isometries is the direct product × ℤ₂.

Isometric Embeddings of Pro-Euclidean Spaces

Barry Minemyer (2015)

Analysis and Geometry in Metric Spaces

In [12] Petrunin proves that a compact metric space X admits an intrinsic isometry into En if and only if X is a pro-Euclidean space of rank at most n, meaning that X can be written as a “nice” inverse limit of polyhedra. He also shows that either case implies that X has covering dimension at most n. The purpose of this paper is to extend these results to include both embeddings and spaces which are proper instead of compact. The main result of this paper is that any pro-Euclidean space of rank...

Currently displaying 1001 – 1020 of 2516