On the area discrepancy of triangulations of squares and trapezoids.
We consider the problem of constructing dense lattices in with a given non trivial automorphisms group. We exhibit a family of such lattices of density at least , which matches, up to a multiplicative constant, the best known density of a lattice packing. For an infinite sequence of dimensions , we exhibit a finite set of lattices that come with an automorphisms group of size , and a constant proportion of which achieves the aforementioned lower bound on the largest packing density. The algorithmic...
We study the finite projective planes with linear programming models. We give a complete description of the convex hull of the finite projective planes of order 2. We give some integer linear programming models whose solution are, either a finite projective (or affine) plane of order n, or a (n+2)-arc.