Displaying 1941 – 1960 of 2522

Showing per page

Surface Projective Convexe de volume fini

Ludovic Marquis (2012)

Annales de l’institut Fourier

Une surface projective convexe est le quotient d’un ouvert proprement convexe Ω de l’espace projectif réel 2 ( ) par un sous-groupe discret Γ de SL 3 ( ) . Nous donnons plusieurs caractérisations du fait qu’une surface projective convexe est de volume fini pour la mesure de Busemann. On en déduit que si Ω n’est pas un triangle alors Ω est strictement convexe, à bord 𝒞 1 et qu’une surface projective convexe S est de volume fini si et seulement si la surface duale est de volume fini.

Symmetric stochastic matrices with given row sums.

Ryszard Grzaslewicz (1990)

Revista Matemática de la Universidad Complutense de Madrid

Characterizations of extreme infinite symmetric stochastic matrices with respect to arbitrary non-negative vector r are given.

Symmetrized and continuous generalization of transversals

Martin Kochol (1996)

Mathematica Bohemica

The theorem of Edmonds and Fulkerson states that the partial transversals of a finite family of sets form a matroid. The aim of this paper is to present a symmetrized and continuous generalization of this theorem.

Currently displaying 1941 – 1960 of 2522