Displaying 201 – 220 of 613

Showing per page

Goffin's algorithm for zonotopes

Michal Černý (2012)

Kybernetika

The Löwner-John ellipse of a full-dimensional bounded convex set is a circumscribed ellipse with the property that if we shrink it by the factor n (where n is dimension), we obtain an inscribed ellipse. Goffin’s algorithm constructs, in polynomial time, a tight approximation of the Löwner-John ellipse of a polyhedron given by facet description. In this text we adapt the algorithm for zonotopes given by generator descriptions. We show that the adapted version works in time polynomial in the size...

Gosset polytopes in integral octonions

Woo-Nyoung Chang, Jae-Hyouk Lee, Sung Hwan Lee, Young Jun Lee (2014)

Czechoslovak Mathematical Journal

We study the integral quaternions and the integral octonions along the combinatorics of the 24 -cell, a uniform polytope with the symmetry D 4 , and the Gosset polytope 4 21 with the symmetry E 8 . We identify the set of the unit integral octonions or quaternions as a Gosset polytope 4 21 or a 24 -cell and describe the subsets of integral numbers having small length as certain combinations of unit integral numbers according to the E 8 or D 4 actions on the 4 21 or the 24 -cell, respectively. Moreover, we show that each...

Hamiltonicity and the 3-Opt procedure for the traveling Salesman problem

Gerard Sierksma (1994)

Applicationes Mathematicae

The 3-Opt procedure deals with interchanging three edges of a tour with three edges not on that tour. For n≥6, the 3-Interchange Graph is a graph on 1/2(n-1)! vertices, corresponding to the hamiltonian tours in K_n; two vertices are adjacent iff the corresponding hamiltonian tours differ in an interchange of 3 edges; i.e. the tours differ in a single 3-Opt step. It is shown that the 3-Interchange Graph is a hamiltonian subgraph of the Symmetric Traveling Salesman Polytope. Upper bounds are derived...

Hardness of embedding simplicial complexes in d

Jiří Matoušek, Martin Tancer, Uli Wagner (2011)

Journal of the European Mathematical Society

Let 𝙴𝙼𝙱𝙴𝙳 k d be the following algorithmic problem: Given a finite simplicial complex K of dimension at most k , does there exist a (piecewise linear) embedding of K into d ? Known results easily imply polynomiality of 𝙴𝙼𝙱𝙴𝙳 k 2 ( k = 1 , 2 ; the case k = 1 , d = 2 is graph planarity) and of 𝙴𝙼𝙱𝙴𝙳 k 2 k for all k 3 . We show that the celebrated result of Novikov on the algorithmic unsolvability of recognizing the 5-sphere implies that 𝙴𝙼𝙱𝙴𝙳 d d and 𝙴𝙼𝙱𝙴𝙳 ( d - 1 ) d are undecidable for each d 5 . Our main result is NP-hardness of 𝙴𝙼𝙱𝙴𝙳 2 4 and, more generally, of 𝙴𝙼𝙱𝙴𝙳 k d for all k , d with...

Hierarchical models, marginal polytopes, and linear codes

Thomas Kahle, Walter Wenzel, Nihat Ay (2009)

Kybernetika

In this paper, we explore a connection between binary hierarchical models, their marginal polytopes, and codeword polytopes, the convex hulls of linear codes. The class of linear codes that are realizable by hierarchical models is determined. We classify all full dimensional polytopes with the property that their vertices form a linear code and give an algorithm that determines them.

Higher-dimensional cluster combinatorics and representation theory

Steffen Oppermann, Hugh Thomas (2012)

Journal of the European Mathematical Society

Higher Auslander algebras were introduced by Iyama generalizing classical concepts from representation theory of finite-dimensional algebras. Recently these higher analogues of classical representation theory have been increasingly studied. Cyclic polytopes are classical objects of study in convex geometry. In particular, their triangulations have been studied with a view towards generalizing the rich combinatorial structure of triangulations of polygons. In this paper, we demonstrate a connection...

Currently displaying 201 – 220 of 613