Page 1

Displaying 1 – 15 of 15

Showing per page

Hamiltonicity and the 3-Opt procedure for the traveling Salesman problem

Gerard Sierksma (1994)

Applicationes Mathematicae

The 3-Opt procedure deals with interchanging three edges of a tour with three edges not on that tour. For n≥6, the 3-Interchange Graph is a graph on 1/2(n-1)! vertices, corresponding to the hamiltonian tours in K_n; two vertices are adjacent iff the corresponding hamiltonian tours differ in an interchange of 3 edges; i.e. the tours differ in a single 3-Opt step. It is shown that the 3-Interchange Graph is a hamiltonian subgraph of the Symmetric Traveling Salesman Polytope. Upper bounds are derived...

Hardness of embedding simplicial complexes in d

Jiří Matoušek, Martin Tancer, Uli Wagner (2011)

Journal of the European Mathematical Society

Let 𝙴𝙼𝙱𝙴𝙳 k d be the following algorithmic problem: Given a finite simplicial complex K of dimension at most k , does there exist a (piecewise linear) embedding of K into d ? Known results easily imply polynomiality of 𝙴𝙼𝙱𝙴𝙳 k 2 ( k = 1 , 2 ; the case k = 1 , d = 2 is graph planarity) and of 𝙴𝙼𝙱𝙴𝙳 k 2 k for all k 3 . We show that the celebrated result of Novikov on the algorithmic unsolvability of recognizing the 5-sphere implies that 𝙴𝙼𝙱𝙴𝙳 d d and 𝙴𝙼𝙱𝙴𝙳 ( d - 1 ) d are undecidable for each d 5 . Our main result is NP-hardness of 𝙴𝙼𝙱𝙴𝙳 2 4 and, more generally, of 𝙴𝙼𝙱𝙴𝙳 k d for all k , d with...

Hierarchical models, marginal polytopes, and linear codes

Thomas Kahle, Walter Wenzel, Nihat Ay (2009)

Kybernetika

In this paper, we explore a connection between binary hierarchical models, their marginal polytopes, and codeword polytopes, the convex hulls of linear codes. The class of linear codes that are realizable by hierarchical models is determined. We classify all full dimensional polytopes with the property that their vertices form a linear code and give an algorithm that determines them.

Higher-dimensional cluster combinatorics and representation theory

Steffen Oppermann, Hugh Thomas (2012)

Journal of the European Mathematical Society

Higher Auslander algebras were introduced by Iyama generalizing classical concepts from representation theory of finite-dimensional algebras. Recently these higher analogues of classical representation theory have been increasingly studied. Cyclic polytopes are classical objects of study in convex geometry. In particular, their triangulations have been studied with a view towards generalizing the rich combinatorial structure of triangulations of polygons. In this paper, we demonstrate a connection...

How to draw tropical planes.

Herrmann, Sven, Jensen, Anders, Joswig, Michael, Sturmfels, Bernd (2009)

The Electronic Journal of Combinatorics [electronic only]

Hyperbolische Transformation konvexer Polyeder

Ralf Gollmer (1981)

Aplikace matematiky

Der Artikel beschäftigt sich mit einigen Eigenschaften von hyperbolischen, d. h. gebrochen-affinen, Transformationen, welche für die Bilder konvexer Polyeder bei solchen Transformationen von Bedeutung sind. Es wird eine explizite Darstellung des Bildes eines konvexen Polyeders durch Ecken und Kanten des Urbildpolyeders gewonnen, die Konvexität des Bildes und das Bild des relativen Inneren einer konvexen Menge untersucht.

Hyperideal polyhedra in hyperbolic 3-space

Xiliang Bao, Francis Bonahon (2002)

Bulletin de la Société Mathématique de France

A hyperideal polyhedron is a non-compact polyhedron in the hyperbolic 3 -space 3 which, in the projective model for 3 ℝℙ 3 , is just the intersection of 3 with a projective polyhedron whose vertices are all outside 3 and whose edges all meet 3 . We classify hyperideal polyhedra, up to isometries of 3 , in terms of their combinatorial type and of their dihedral angles.

Currently displaying 1 – 15 of 15

Page 1