Balanced Subdivision and Enumeration in Balanced Spheres.
Page 1
L.J. Billera, Katherine E. Magurn (1987)
Discrete & computational geometry
Joseph Valentine (1980)
Fundamenta Mathematicae
L. Kronecker (1870)
Journal für die reine und angewandte Mathematik
Ardila, Federico, Reiner, Victor, Williams, Lauren (2005)
Séminaire Lotharingien de Combinatoire [electronic only]
Frédéric Chapoton (2000)
Annales de l'institut Fourier
On définit une structure de bigèbre différentielle graduée sur la somme directe des complexes cellulaires des permutoèdres, qui contient une sous-bigèbre différentielle graduée dont le complexe sous-jacent est la somme directe des complexes cellulaires des polytopes de Stasheff. Ceci étend des constructions de Malvenuto et Reutenauer et de Loday et Ronco pour les sommets des mêmes polytopes.
Wegner, Bernd (1995)
Mathematica Pannonica
Libor Vesely (2000)
Extracta Mathematicae
A Banach space X is called polyhedral if the unit ball of each one of its finite-dimensional (equivalently: two-dimensional [6]) subspaces is a polytope. Polyhedral spaces were studied by various authors; most of the structural results are due to V. Fonf. We refer the reader to the surveys [1], [2] for other definitions of polyhedrality, main properties and bibliography. In this paper we present a short alternative proof of the basic result on the structure of the unit ball of the polyhedral space...
Hugh Thomas (2002)
Collectanea Mathematica
Pavel Krejčí, Vincenzo Recupero (2014)
Mathematica Bohemica
We consider a class of evolution differential inclusions defining the so-called stop operator arising in elastoplasticity, ferromagnetism, and phase transitions. These differential inclusions depend on a constraint which is represented by a convex set that is called the characteristic set. For (bounded variation) data we compare different notions of solutions and study how the continuity properties of the solution operators are related to the characteristic set. In the finite-dimensional case...
Page 1