A scalar geodesic deviation equation and a phase theorem.
A second-order differential identity for the Riemann tensor is obtained on a manifold with a symmetric connection. Several old and some new differential identities for the Riemann and Ricci tensors are derived from it. Applications to manifolds with recurrent or symmetric structures are discussed. The new structure of K-recurrency naturally emerges from an invariance property of an old identity due to Lovelock.
In the present paper we give some properties of -biharmonic hypersurfaces in real space forms. By using the -biharmonic equation for a hypersurface of a Riemannian manifold, we characterize the -biharmonicity of constant mean curvature and totally umbilical hypersurfaces in a Riemannian manifold and, in particular, in a real space form. As an example, we consider -biharmonic vertical cylinders in .
The note is about a connection between Seshadri constants and packing constants and presents another proof of Lazarsfeld's result from [Math. Res. Lett. 3 (1996), 439-447].
We study spin structures on orbifolds. In particular, we show that if the singular set has codimension greater than 2, an orbifold is spin if and only if its smooth part is. On compact orbifolds, we show that any non-trivial twistor spinor admits at most one zero which is singular unless the orbifold is conformally equivalent to a round sphere. We show the sharpness of our results through examples.