Displaying 401 – 420 of 776

Showing per page

A spectral estimate for the Dirac operator on Riemannian flows

Nicolas Ginoux, Georges Habib (2010)

Open Mathematics

We give a new upper bound for the smallest eigenvalues of the Dirac operator on a Riemannian flow carrying transversal Killing spinors. We derive an estimate on both Sasakian and 3-dimensional manifolds, and partially classify those satisfying the limiting case. Finally, we compare our estimate with a lower bound in terms of a natural tensor depending on the eigenspinor.

A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on n

E. K. Narayanan, S. Thangavelu (2006)

Annales de l’institut Fourier

We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on n . If f ( z ) e 1 4 | z | 2 is a Schwartz class function we show that f is supported in a ball of radius B in n if and only if f × μ r ( z ) = 0 for r > B + | z | for all z n . This is an analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When n = 1 we show that the two conditions f × μ r ( z ) = μ r × f ( z ) = 0 for r > B + | z | imply a support theorem for a large class of functions with exponential growth. Surprisingly enough,this latter...

A stable class of spacetimes with naked singularities

Marcus Kriele (1997)

Banach Center Publications

We present a stable class of spacetimes which satisfy the conditions of the singularity theorem of Hawking & Penrose (1970), and which contain naked singularities. This offers counterexamples to a geometric version of the strong cosmic censorship hypothesis.

A stochastic approach to relativistic diffusions

Ismaël Bailleul (2010)

Annales de l'I.H.P. Probabilités et statistiques

A new class of relativistic diffusions encompassing all the previously studied examples has recently been introduced in the article of C. Chevalier and F. Debbasch (J. Math. Phys. 49 (2008) 043303), both in a heuristic and analytic way. A stochastic approach of these processes is proposed here, in the general framework of lorentzian geometry. In considering the dynamics of the random motion in strongly causal spacetimes, we are able to give a simple definition of the one-particle distribution function...

A strong maximum principle for the Paneitz operator and a non-local flow for the Q -curvature

Matthew J. Gursky, Andrea Malchiodi (2015)

Journal of the European Mathematical Society

In this paper we consider Riemannian manifolds ( M n , g ) of dimension n 5 , with semi-positive Q -curvature and non-negative scalar curvature. Under these assumptions we prove (i) the Paneitz operator satisfies a strong maximum principle; (ii) the Paneitz operator is a positive operator; and (iii) its Green’s function is strictly positive. We then introduce a non-local flow whose stationary points are metrics of constant positive Q -curvature. Modifying the test function construction of Esposito-Robert, we show...

Currently displaying 401 – 420 of 776