Displaying 381 – 400 of 707

Showing per page

The Quantum Birkhoff Normal Form and Spectral Asymptotics

San Vũ Ngọc (2006)

Journées Équations aux dérivées partielles

In this talk we explain a simple treatment of the quantum Birkhoff normal form for semiclassical pseudo-differential operators with smooth coefficients. The normal form is applied to describe the discrete spectrum in a generalised non-degenerate potential well, yielding uniform estimates in the energy E . This permits a detailed study of the spectrum in various asymptotic regions of the parameters ( E , ) , and gives improvements and new proofs for many of the results in the field. In the completely resonant...

The rectifying developable and the spherical Darboux image of a space curve

Shyuichi Izumiya, Haruyo Katsumi, Takako Yamasaki (1999)

Banach Center Publications

In this paper we study singularities of certain surfaces and curves associated with the family of rectifying planes along space curves. We establish the relationships between singularities of these subjects and geometric invariants of curves which are deeply related to the order of contact with helices.

The Regularization of the Second Order Lagrangians in Example

Dana Smetanová (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

This paper is devoted to geometric formulation of the regular (resp. strongly regular) Hamiltonian system. The notion of the regularization of the second order Lagrangians is presented. The regularization procedure is applied to concrete example.

The relation between the dual and the adjoint Radon transforms

Cnops, J. (1991)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0742.00067.]Let P m be the set of hyperplanes σ : x , θ = p in m , S m - 1 the unit sphere of m , E m the exterior of the unit ball, T m the set of hyperplanes not passing through the unit ball, R f ( θ , p ) = σ f ( x ) d x the Radon transform, R # g ( x ) = S m - 1 g ( θ , x , θ ) d S θ its dual. R as operator from L 2 ( m ) to L 2 ( S m - 1 ) × ) is a closable, densely defined operator, R * denotes the operator given by ( R * g ) ( x ) = R # g ( x ) if the integral exists for x m a.e. Then the closure of R * is the adjoint of R . The author shows that the Radon transform and its dual can be linked by two operators...

The resolution of the bounded L 2 curvature conjecture in general relativity

Sergiu Klainerman, Igor Rodnianski, Jérémie Szeftel (2014/2015)

Séminaire Laurent Schwartz — EDP et applications

This paper reports on the recent proof of the bounded L 2 curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the L 2 -norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.

The restriction theorem for fully nonlinear subequations

F. Reese Harvey, H. Blaine Lawson (2014)

Annales de l’institut Fourier

Let X be a submanifold of a manifold Z . We address the question: When do viscosity subsolutions of a fully nonlinear PDE on Z , restrict to be viscosity subsolutions of the restricted subequation on X ? This is not always true, and conditions are required. We first prove a basic result which, in theory, can be applied to any subequation. Then two definitive results are obtained. The first applies to any “geometrically defined” subequation, and the second to any subequation which can be transformed...

Currently displaying 381 – 400 of 707