The Radon Transform for Forms of Type (1, 1) on Complex Projective Space (Erratum).
In this paper we study singularities of certain surfaces and curves associated with the family of rectifying planes along space curves. We establish the relationships between singularities of these subjects and geometric invariants of curves which are deeply related to the order of contact with helices.
The aim of the paper is to define a k-cosymplectic structure on the standard k-cosymplectic manifold associated to a regular Lagrangian and to reduce it via Marsden-Weinstein reduction.
This paper is devoted to geometric formulation of the regular (resp. strongly regular) Hamiltonian system. The notion of the regularization of the second order Lagrangians is presented. The regularization procedure is applied to concrete example.
[For the entire collection see Zbl 0742.00067.]Let be the set of hyperplanes in , the unit sphere of , the exterior of the unit ball, the set of hyperplanes not passing through the unit ball, the Radon transform, its dual. as operator from to is a closable, densely defined operator, denotes the operator given by if the integral exists for a.e. Then the closure of is the adjoint of . The author shows that the Radon transform and its dual can be linked by two operators...
This paper reports on the recent proof of the bounded curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the -norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.
Let be a submanifold of a manifold . We address the question: When do viscosity subsolutions of a fully nonlinear PDE on , restrict to be viscosity subsolutions of the restricted subequation on ? This is not always true, and conditions are required. We first prove a basic result which, in theory, can be applied to any subequation. Then two definitive results are obtained. The first applies to any “geometrically defined” subequation, and the second to any subequation which can be transformed...
El concepto de curvatura es muy familiar en la Geometría Diferencial. En este artículo se procura mostrar tanto la evolución de su concepto a lo largo de la historia como alguna de sus aplicaciones. En esta exposición existe una limitación tanto en la presenatción de algunos tópicos como en la ausencia de otros que son básicos en la Geometría de Riemann. Entre éstos últimos cabría destacar, entre otros, las variedades minimales y las kählerianas o la teoría de Morse. Aunque de manera implícita,...