Displaying 561 – 580 of 707

Showing per page

Topological tools for the prescribed scalar curvature problem on S n

Dina Abuzaid, Randa Ben Mahmoud, Hichem Chtioui, Afef Rigane (2014)

Open Mathematics

In this paper, we consider the problem of the existence of conformal metrics with prescribed scalar curvature on the standard sphere S n, n ≥ 3. We give new existence and multiplicity results based on a new Euler-Hopf formula type. Our argument also has the advantage of extending well known results due to Y. Li [16].

Topologie du feuilletage fortement stable

Françoise Dal'bo (2000)

Annales de l'institut Fourier

Soient X une variété de Hadamard de courbure - 1 et Γ un groupe d’isométries non élémentaire. Nous montrons qu’il y a équivalence entre la non-arithméticité du spectre des longueurs de Γ X , le mélange topologique du flot géodésique et l’existence d’une feuille dense pour le feuilletage fortement stable.

Toric Hermitian surfaces and almost Kähler structures

Włodzimierz Jelonek (2007)

Annales Polonici Mathematici

The aim of this paper is to investigate the class of compact Hermitian surfaces (M,g,J) admitting an action of the 2-torus T² by holomorphic isometries. We prove that if b₁(M) is even and (M,g,J) is locally conformally Kähler and χ(M) ≠ 0 then there exists an open and dense subset U ⊂ M such that ( U , g | U ) is conformally equivalent to a 4-manifold which is almost Kähler in both orientations. We also prove that the class of Calabi Ricci flat Kähler metrics related with the real Monge-Ampère equation is a...

Toric structures on near-symplectic 4-manifolds

David T. Gay, Margaret Symington (2009)

Journal of the European Mathematical Society

A near-symplectic structure on a 4-manifold is a closed 2-form that is symplectic away from the 1-dimensional submanifold along which it vanishes and that satisfies a certain transversality condition along this vanishing locus. We investigate near-symplectic 4-manifolds equipped with singular Lagrangian torus fibrations which are locally induced by effective Hamiltonian torus actions. We show how such a structure is completely characterized by a singular integral affine structure on the base of...

Torsion and the second fundamental form for distributions

Geoff Prince (2016)

Communications in Mathematics

The second fundamental form of Riemannian geometry is generalised to the case of a manifold with a linear connection and an integrable distribution. This bilinear form is generally not symmetric and its skew part is the torsion. The form itself is closely related to the shape map of the connection. The codimension one case generalises the traditional shape operator of Riemannian geometry.

Torsions of connections on higher order cotangent bundles

Miroslav Doupovec, Jan Kurek (2003)

Czechoslovak Mathematical Journal

By a torsion of a general connection Γ on a fibered manifold Y M we understand the Frölicher-Nijenhuis bracket of Γ and some canonical tangent valued one-form (affinor) on Y . Using all natural affinors on higher order cotangent bundles, we determine all torsions of general connections on such bundles. We present the geometrical interpretation and study some properties of the torsions.

Currently displaying 561 – 580 of 707