Displaying 721 – 740 of 776

Showing per page

Approximation of viscosity solution by morphological filters

Denis Pasquignon (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider in 2 all curvature equation u t = | D u | G ( curv ( u ) ) where G is a nondecreasing function and curv(u) is the curvature of the level line passing by x. These equations are invariant with respect to any contrast change u → g(u), with g nondecreasing. Consider the contrast invariant operator T t : u o u ( t ) . A Matheron theorem asserts that all contrast invariant operator T can be put in a form ( T u ) ( 𝐱 ) = inf B sup 𝐲 B u ( 𝐱 + 𝐲 ) . We show the asymptotic equivalence of both formulations. More precisely, we show that all curvature equations can be obtained...

Äquiforme Analogien in der Kinematik der konjugierten Profile

Karel Drábek, Zdeněk Pírko (1984)

Aplikace matematiky

In der Arbeit wird vor allem die äquiforme Analogie zu der zweierleien Erzeugung der Hüllbahnkurve und ihre Ausnützyung zur Herleitung der H. R. Müllerschen Gleichungen gegebe. Aus der Beziehung in einer von diesen Gleichungen werden drei Typen der Aufgaben gelöst: direkte, inverse und gemischte. Weiter wird die Analogie zu dem Cauchyschen Satz über den Winkel der gemeinsamen Normale der konjugierten Profile und der Verbindungsgerade dieses Berührungspunktes mit dem 1-Pole in der gegebenen Phase...

Around the bounded L 2 curvature conjecture in general relativity

Sergiu Klainerman, Igor Rodnianski, Jeremie Szeftel (2008)

Journées Équations aux dérivées partielles

We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation g φ = 0 , where is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes L 2 bounds on the curvature tensor R of is a major step towards the proof of the bounded L 2 curvature conjecture.

Aspects of Geometric Quantization Theory in Poisson Geometry

Izu Vaisman (2000)

Banach Center Publications

This is a survey exposition of the results of [14] on the relationship between the geometric quantization of a Poisson manifold, of its symplectic leaves and its symplectic realizations, and of the results of [13] on a certain kind of super-geometric quantization. A general formulation of the geometric quantization problem is given at the beginning.

Aspects of parabolic invariant theory

Gover, Rod A. (1999)

Proceedings of the 18th Winter School "Geometry and Physics"

A certain family of homogeneous spaces is investigated. Basic invariant operators for each of these structures are presented and some analogies to Levi-Civita connections of Riemannian geometry are pointed out.

Currently displaying 721 – 740 of 776