Previous Page 39

Displaying 761 – 776 of 776

Showing per page

Asymptotics for Bergman-Hodge kernels for high powers of complex line bundles

Robert Berman, Johannes Sjöstrand (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper we obtain the full asymptotic expansion of the Bergman-Hodge kernel associated to a high power of a holomorphic line bundle with non-degenerate curvature. We also explore some relations with asymptotic holomorphic sections on symplectic manifolds.

Atoroïdalité complète et annulation de l’invariant λ ¯ de Perelman

Pablo Suárez-Serrato (2007/2008)

Séminaire de théorie spectrale et géométrie

On résume les proprietés de l’invariant λ ¯ de Perelman, et en combinaison avec l’invariant de Yamabe on exprime certaines proprietés géométriques des variétés de dimension 3 en fonction de λ ¯ . On décrit des exemples d’annulation de λ ¯ en dimension 4 , où on trouve des liens entre l’effondrement et l’existence de métriques à courbure scalaire positive. On montre qu’une version d’atoroïdalité qu’on appelle atoroïdalité complète est détectée par λ ¯ sur les variétés de courbure négative ou nulle de dimension...

Au bord de certains polyèdres hyperboliques

Marc Bourdon (1995)

Annales de l'institut Fourier

Le cadre de cet article est celui des groupes et des espaces hyperboliques de M.  Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...

Automorphisms of Spacetime Manifold with Torsion

Vladimir Ivanovich Pan’Zhenskii, Olga Petrovna Surina (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper we prove that the maximum dimension of the Lie group of automorphisms of the Riemann–Cartan 4-dimensional manifold does not exceed 8, and if the Cartan connection is skew-symmetric or semisymmetric, the maximum dimension is equal to 7. In addition, in the case of the Riemann–Cartan n -dimensional manifolds with semisymmetric connection the maximum dimension of the Lie group of automorphisms is equal to n ( n - 1 ) / 2 + 1 for any n > 2 .

Currently displaying 761 – 776 of 776

Previous Page 39