Semigroups in the simply connected covering of SL(2).
In this paper, we generalize the Gauduchon metrics on a compact complex manifold and define the functions on the space of its hermitian metrics.
We show that there is no proper CR submanifold with semi-flat normal connection and semi-parallel second fundamental form in a complex space form with non-zero constant holomorphic sectional curvature such that the dimension of the holomorphic tangent space is greater than 2.
A Riemannian manifold is said to be semisymmetric if . A submanifold of Euclidean space which satisfies is called semiparallel. It is known that semiparallel submanifolds are intrinsically semisymmetric. But can every semisymmetric manifold be immersed isometrically as a semiparallel submanifold? This problem has been solved up to now only for the dimension 2, when the answer is affirmative for the positive Gaussian curvature. Among semisymmetric manifolds a special role is played by the foliated...
We introduce semi-slant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds as a generalization of semi-slant immersions, invariant Riemannian maps, anti-invariant Riemannian maps and slant Riemannian maps. We obtain characterizations, investigate the harmonicity of such maps and find necessary and sufficient conditions for semi-slant Riemannian maps to be totally geodesic. Then we relate the notion of semi-slant Riemannian maps to the notion of pseudo-horizontally weakly conformal...
The present paper is concerned with obtaining a classification regarding to four-dimensional semi-symmetric neutral Lie groups. Moreover, we discuss some geometric properties of these spaces. We exhibit a rich class of non-Einstein Ricci soliton examples.
We determine explicitly the local structure of a semi-symmetric -space.