Seiberg Witten invariants and uniformizations.
We give an introduction into and exposition of Seiberg-Witten theory.
We provide a local classification of selfdual Einstein riemannian four-manifolds admitting a positively oriented hermitian structure and characterize those which carry a hyperhermitian, non-hyperkähler structure compatible with the negative orientation. We show that selfdual Einstein 4-manifolds obtained as quaternionic quotients of and are hermitian.
We study the Jones and Tod correspondence between selfdual conformal -manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl -manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that in the presence...
This paper is a contribution to the mathematical modelling of the hump effect. We present a mathematical study (existence, homogenization) of a Hamilton-Jacobi problem which represents the propagation of a front flame in a striated media.
We study the group of diffeomorphisms of a 3-dimensional Poisson torus which preserve the Poisson structure up to a constant multiplier, and the group of similarity ratios.
We consider a network in the Euclidean plane that consists of three distinct half-lines with common start points. From that network as initial condition, there exists a network that consists of three curves that all start at one point, where they form degree angles, and expands homothetically under curve shortening flow. We also prove uniqueness of these networks.
Soit une algèbre de Jordan simple euclidienne de dimension finie et le cône symétrique associé. Nous étudions dans cet article le semi-groupe , naturellement associé à , formé des automorphismes holomorphes du domaine tube qui appliquent le cône dans lui-même.