Displaying 101 – 120 of 238

Showing per page

New rotational integrals in space forms, with an application to surface area estimation

Ximo Gual-Arnau, Luis M. Cruz-Orive (2016)

Applications of Mathematics

A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.

New stability results for spheres and Wulff shapes

Julien Roth (2018)

Communications in Mathematics

We prove that a closed convex hypersurface of the Euclidean space with almost constant anisotropic first and second mean curvatures in the L p -sense is W 2 , p -close (up to rescaling and translations) to the Wulff shape. We also obtain characterizations of geodesic hyperspheres of space forms improving those of [Ro1] and [Ro].

New topological measures on the torus

Finn F. Knudsen (2005)

Fundamenta Mathematicae

Recently Entov and Polterovich asked if the Grubb measure was the only symplectic topological measure on the torus. Much to our surprise we discovered a whole new class of intrinsic simple topological measures on the torus, many of which were symplectic.

New Vacuum Solutions for Quadratic Metric-Affine Gravity - a Metric Affine Model for the Massless Neutrino?

Pasic, Vedad (2010)

Mathematica Balkanica New Series

AMS Subj. Classification: 83C15, 83C35In this paper we present an overview of our research that was presented at theMASSEE International Congress on Mathematics MICOM 2009 in Ohrid, Macedonia. We deal with quadratic metric–affine gravity, which is an alternative theory of gravity. We present new vacuum solutions for this theory and an attempt to give their physical interpretation on the basis of comparison with existing classical models. These new explicit vacuum solutions of quadratic metric–affine...

Newton and conjugate gradient for harmonic maps from the disc into the sphere

Morgan Pierre (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We compute numerically the minimizers of the Dirichlet energy E ( u ) = 1 2 B 2 | u | 2 d x among maps u : B 2 S 2 from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous P 1 finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which is a preconditioned...

Newton transformations on null hypersurfaces

Cyriaque Atindogbé and Hans Tetsing Fotsing (2015)

Communications in Mathematics

Any rigged null hypersurface is provided with two shape operators: with respect to the rigging and the rigged vector fields respectively. The present paper deals with the Newton transformations built on both of them and establishes related curvature properties. The laters are used to derive necessary and sufficient conditions for higher-order umbilicity and maximality we introduced in passing, and develop general Minkowski-type formulas for the null hypersurface, supported by some physical models...

Nilpotent complex structures.

Luis A. Cordero, Marisa Fernández, Alfred Gray, Luis Ugarte (2001)

RACSAM

Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.

Currently displaying 101 – 120 of 238