The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 181 – 200 of 253

Showing per page

On the motion of a curve by its binormal curvature

Jerrard, Robert L., Didier Smets (2015)

Journal of the European Mathematical Society

We propose a weak formulation for the binormal curvature flow of curves in 3 . This formulation is sufficiently broad to consider integral currents as initial data, and sufficiently strong for the weak-strong uniqueness property to hold, as long as self-intersections do not occur. We also prove a global existence theorem in that framework.

On the multiplicity of eigenvalues of conformally covariant operators

Yaiza Canzani (2014)

Annales de l’institut Fourier

Let ( M , g ) be a compact Riemannian manifold and P g an elliptic, formally self-adjoint, conformally covariant operator of order m acting on smooth sections of a bundle over M . We prove that if P g has no rigid eigenspaces (see Definition 2.2), the set of functions f C ( M , ) for which P e f g has only simple non-zero eigenvalues is a residual set in C ( M , ) . As a consequence we prove that if P g has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics in the C -topology....

Currently displaying 181 – 200 of 253