Displaying 101 – 120 of 2173

Showing per page

A strong maximum principle for the Paneitz operator and a non-local flow for the Q -curvature

Matthew J. Gursky, Andrea Malchiodi (2015)

Journal of the European Mathematical Society

In this paper we consider Riemannian manifolds ( M n , g ) of dimension n 5 , with semi-positive Q -curvature and non-negative scalar curvature. Under these assumptions we prove (i) the Paneitz operator satisfies a strong maximum principle; (ii) the Paneitz operator is a positive operator; and (iii) its Green’s function is strictly positive. We then introduce a non-local flow whose stationary points are metrics of constant positive Q -curvature. Modifying the test function construction of Esposito-Robert, we show...

A symmetry problem in the calculus of variations

Graziano Crasta (2006)

Journal of the European Mathematical Society

We consider the integral functional J ( u ) = Ω [ f ( | D u | ) u ] d x , u W 0 1 , 1 ( Ω ) , where Ω n , n 2 , is a nonempty bounded connected open subset of n with smooth boundary, and s f ( | s | ) is a convex, differentiable function. We prove that if J admits a minimizer in W 0 1 , 1 ( Ω ) depending only on the distance from the boundary of Ω , then Ω must be a ball.

Currently displaying 101 – 120 of 2173