Displaying 141 – 160 of 163

Showing per page

Traceless cubic forms on statistical manifolds and Tchebychev geometry

Hiroshi Matsuzoe (2005)

Banach Center Publications

Geometry of traceless cubic forms is studied. It is shown that the traceless part of the cubic form on a statistical manifold determines a conformal-projective equivalence class of statistical manifolds. This conformal-projective equivalence on statistical manifolds is a natural generalization of conformal equivalence on Riemannian manifolds. As an application, Tchebychev type immersions in centroaffine immersions of codimension two are studied.

Transitive conformal holonomy groups

Jesse Alt (2012)

Open Mathematics

For (M, [g]) a conformal manifold of signature (p, q) and dimension at least three, the conformal holonomy group Hol(M, [g]) ⊂ O(p + 1, q + 1) is an invariant induced by the canonical Cartan geometry of (M, [g]). We give a description of all possible connected conformal holonomy groups which act transitively on the Möbius sphere S p,q, the homogeneous model space for conformal structures of signature (p, q). The main part of this description is a list of all such groups which also act irreducibly...

Translation foliations of codimension one on compact affine manifolds

Francisco Turiel (1997)

Banach Center Publications

Consider two foliations 1 and 2 , of dimension one and codimension one respectively, on a compact connected affine manifold ( M , ) . Suppose that T 1 T 2 T 2 ; T 2 T 1 T 1 and T M = T 1 T 2 . In this paper we show that either 2 is given by a fibration over S 1 , and then 1 has a great degree of freedom, or the trace of 1 is given by a few number of types of curves which are completely described. Moreover we prove that 2 has a transverse affine structure.

Tritangent planes to toroidal knots.

A. Montesinos Amilibia (1991)

Revista Matemática de la Universidad Complutense de Madrid

A proof is given that, with the only exception of (3,2), all toroidal knots in R3 obtained in the standard way by stereographic projection of knots in S3 have tritangent planes.

Two-dimensional curvature functionals with superquadratic growth

Ernst Kuwert, Tobias Lamm, Yuxiang Li (2015)

Journal of the European Mathematical Society

For two-dimensional, immersed closed surfaces f : Σ n , we study the curvature functionals p ( f ) and 𝒲 p ( f ) with integrands ( 1 + | A | 2 ) p / 2 and ( 1 + | H | 2 ) p / 2 , respectively. Here A is the second fundamental form, H is the mean curvature and we assume p > 2 . Our main result asserts that W 2 , p critical points are smooth in both cases. We also prove a compactness theorem for 𝒲 p -bounded sequences. In the case of p this is just Langer’s theorem [16], while for 𝒲 p we have to impose a bound for the Willmore energy strictly below 8 π as an additional condition....

Two-jets of conformal fields along their zero sets

Andrzej Derdzinski (2012)

Open Mathematics

The connected components of the zero set of any conformal vector field v, in a pseudo-Riemannian manifold (M, g) of arbitrary signature, are of two types, which may be called ‘essential’ and ‘nonessential’. The former consist of points at which v is essential, that is, cannot be turned into a Killing field by a local conformal change of the metric. In a component of the latter type, points at which v is nonessential form a relatively-open dense subset that is at the same time a totally umbilical...

Two-parametric motions in E 3

Adolf Karger (1987)

Aplikace matematiky

The paper deals with the local differential geometry of two-parametric motions in the Euclidean space. The first part of the paper contains contemporary formulation of classical results in this area together with the connection to the elliptical differential geometry. The remaining part contains applications. Necessary and sufficient conditions for splitting of a two-parametric motion into a product of two one-parametric motions, characterization of motions with constant invariants and some others....

Currently displaying 141 – 160 of 163