Total mean curvature and closed geodesics.
Geometry of traceless cubic forms is studied. It is shown that the traceless part of the cubic form on a statistical manifold determines a conformal-projective equivalence class of statistical manifolds. This conformal-projective equivalence on statistical manifolds is a natural generalization of conformal equivalence on Riemannian manifolds. As an application, Tchebychev type immersions in centroaffine immersions of codimension two are studied.
For (M, [g]) a conformal manifold of signature (p, q) and dimension at least three, the conformal holonomy group Hol(M, [g]) ⊂ O(p + 1, q + 1) is an invariant induced by the canonical Cartan geometry of (M, [g]). We give a description of all possible connected conformal holonomy groups which act transitively on the Möbius sphere S p,q, the homogeneous model space for conformal structures of signature (p, q). The main part of this description is a list of all such groups which also act irreducibly...
Consider two foliations and , of dimension one and codimension one respectively, on a compact connected affine manifold . Suppose that ; and . In this paper we show that either is given by a fibration over , and then has a great degree of freedom, or the trace of is given by a few number of types of curves which are completely described. Moreover we prove that has a transverse affine structure.
A proof is given that, with the only exception of (3,2), all toroidal knots in R3 obtained in the standard way by stereographic projection of knots in S3 have tritangent planes.
For two-dimensional, immersed closed surfaces , we study the curvature functionals and with integrands and , respectively. Here is the second fundamental form, is the mean curvature and we assume . Our main result asserts that critical points are smooth in both cases. We also prove a compactness theorem for -bounded sequences. In the case of this is just Langer’s theorem [16], while for we have to impose a bound for the Willmore energy strictly below as an additional condition....
The connected components of the zero set of any conformal vector field v, in a pseudo-Riemannian manifold (M, g) of arbitrary signature, are of two types, which may be called ‘essential’ and ‘nonessential’. The former consist of points at which v is essential, that is, cannot be turned into a Killing field by a local conformal change of the metric. In a component of the latter type, points at which v is nonessential form a relatively-open dense subset that is at the same time a totally umbilical...
The paper deals with the local differential geometry of two-parametric motions in the Euclidean space. The first part of the paper contains contemporary formulation of classical results in this area together with the connection to the elliptical differential geometry. The remaining part contains applications. Necessary and sufficient conditions for splitting of a two-parametric motion into a product of two one-parametric motions, characterization of motions with constant invariants and some others....