Displaying 201 – 220 of 1303

Showing per page

Curl bounds grad on SO(3)

Ingo Münch, Patrizio Neff (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Let F p GL ( 3 ) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [ F p ] · ( F p ) T applied to rotations controls the gradient in the sense that pointwise R C 1 ( 3 , SO ( 3 ) ) : Curl [ R ] · R T 𝕄 3 × 3 2 1 2 D R 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math. 55 (2002) 1461–1506; John, Comme Pure Appl. Math. 14 (1961) 391–413; Reshetnyak, Siberian Math. J. 8 (1967) 631–653)] as well as an associated linearized theorem...

Curl bounds Grad on SO(3)

Patrizio Neff, Ingo Münch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let F p GL ( 3 ) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [ F p ] · ( F p ) T applied to rotations controls the gradient in the sense that pointwise R C 1 ( 3 , SO ( 3 ) ) : Curl [ R ] · R T 𝕄 3 × 3 2 1 2 D R 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math.55 (2002) 1461–1506; John, Comme Pure Appl. Math.14 (1961) 391–413; Reshetnyak, Siberian Math. J.8 (1967) 631–653)] as well as an associated linearized theorem saying...

Curvature and torsion formulas for conflict sets

Martijn van Manen (2003)

Banach Center Publications

Conflict set are the points at equal distance from a number of manifolds. Known results on the differential geometry of these sets are generalized and extended.

Curvature homogeneity of affine connections on two-dimensional manifolds

Oldřich Kowalski, Barbara Opozda, Zdeněk Vlášek (1999)

Colloquium Mathematicae

Curvature homogeneity of (torsion-free) affine connections on manifolds is an adaptation of a concept introduced by I. M. Singer. We analyze completely the relationship between curvature homogeneity of higher order and local homogeneity on two-dimensional manifolds.

Curvature homogeneous spaces whose curvature tensors have large symmetries

Kazumi Tsukada (2002)

Commentationes Mathematicae Universitatis Carolinae

We study curvature homogeneous spaces or locally homogeneous spaces whose curvature tensors are invariant by the action of “large" Lie subalgebras 𝔥 of 𝔰𝔬 ( n ) . In this paper we deal with the cases of 𝔥 = 𝔰𝔬 ( r ) 𝔰𝔬 ( n - r ) ( 2 r ...

Curvature properties of φ-null Osserman Lorentzian S-manifolds

Letizia Brunetti, Angelo Caldarella (2014)

Open Mathematics

We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S-manifold and the Jacobi operators with respect to particular spacelike unit vectors. We study the number of the eigenvalues of such operators on Lorentzian S-manifolds satisfying the φ-null Osserman condition, under suitable assumptions on the dimension of the manifold. Then, we provide in full generality a new curvature characterization for Lorentzian S-manifolds and we use...

Currently displaying 201 – 220 of 1303