Displaying 601 – 620 of 1303

Showing per page

On geodesic mappings preserving the Einstein tensor

Olena E. Chepurna, Volodymyr A. Kiosak, Josef Mikeš (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper there are discussed the geodesic mappings which preserved the Einstein tensor. We proved that the tensor of concircular curvature is invariant under Einstein tensor-preserving geodesic mappings.

On geometry of curves of flags of constant type

Boris Doubrov, Igor Zelenko (2012)

Open Mathematics

We develop an algebraic version of Cartan’s method of equivalence or an analog of Tanaka prolongation for the (extrinsic) geometry of curves of flags of a vector space W with respect to the action of a subgroup G of GL(W). Under some natural assumptions on the subgroup G and on the flags, one can pass from the filtered objects to the corresponding graded objects and describe the construction of canonical bundles of moving frames for these curves in the language of pure linear algebra. The scope...

On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces

Raad J. K. al Lami, Marie Škodová, Josef Mikeš (2006)

Archivum Mathematicum

In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces A n onto (pseudo-) Kählerian spaces K ¯ n . We proved that these spaces A n do not admit nontrivial holomorphically projective mappings onto K ¯ n . These results are a generalization of results by T. Sakaguchi, J. Mikeš and V. V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.

On holomorphically projective mappings of e -Kähler manifolds

Irena Hinterleitner (2012)

Archivum Mathematicum

In this paper we study fundamental equations of holomorphically projective mappings of e -Kähler spaces (i.e. classical, pseudo- and hyperbolic Kähler spaces) with respect to the smoothness class of metrics. We show that holomorphically projective mappings preserve the smoothness class of metrics.

On invariant operations on pseudo-Riemannian manifolds

Jan Slovák (1992)

Commentationes Mathematicae Universitatis Carolinae

Invariant polynomial operators on Riemannian manifolds are well understood and the knowledge of full lists of them becomes an effective tool in Riemannian geometry, [Atiyah, Bott, Patodi, 73] is a very good example. The present short paper is in fact a continuation of [Slovák, 92] where the classification problem is reconsidered under very mild assumptions and still complete classification results are derived even in some non-linear situations. Therefore, we neither repeat the detailed exposition...

On isotropic Berwald metrics

Akbar Tayebi, Behzad Najafi (2012)

Annales Polonici Mathematici

We prove that every isotropic Berwald metric of scalar flag curvature is a Randers metric. We study the relation between an isotropic Berwald metric and a Randers metric which are pointwise projectively related. We show that on constant isotropic Berwald manifolds the notions of R-quadratic and stretch metrics are equivalent. Then we prove that every complete generalized Landsberg manifold with isotropic Berwald curvature reduces to a Berwald manifold. Finally, we study C-conformal changes of isotropic...

Currently displaying 601 – 620 of 1303