On Growth and Form and Geometry. I
Some geometric objects of higher order concerning extensions, semi-sprays, connections and Lagrange metrics are constructed using an anchored vector bundle.
In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces onto (pseudo-) Kählerian spaces . We proved that these spaces do not admit nontrivial holomorphically projective mappings onto . These results are a generalization of results by T. Sakaguchi, J. Mikeš and V. V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.
In this paper we study fundamental equations of holomorphically projective mappings from manifolds with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.
In this paper we study fundamental equations of holomorphically projective mappings of -Kähler spaces (i.e. classical, pseudo- and hyperbolic Kähler spaces) with respect to the smoothness class of metrics. We show that holomorphically projective mappings preserve the smoothness class of metrics.
Invariant polynomial operators on Riemannian manifolds are well understood and the knowledge of full lists of them becomes an effective tool in Riemannian geometry, [Atiyah, Bott, Patodi, 73] is a very good example. The present short paper is in fact a continuation of [Slovák, 92] where the classification problem is reconsidered under very mild assumptions and still complete classification results are derived even in some non-linear situations. Therefore, we neither repeat the detailed exposition...
We prove that every isotropic Berwald metric of scalar flag curvature is a Randers metric. We study the relation between an isotropic Berwald metric and a Randers metric which are pointwise projectively related. We show that on constant isotropic Berwald manifolds the notions of R-quadratic and stretch metrics are equivalent. Then we prove that every complete generalized Landsberg manifold with isotropic Berwald curvature reduces to a Berwald manifold. Finally, we study C-conformal changes of isotropic...
In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.
There is a well known one–parameter family of left invariant CR structures on . We show how purely algebraic methods can be used to explicitly compute the canonical Cartan connections associated to these structures and their curvatures. We also obtain explicit descriptions of tractor bundles and tractor connections.