Displaying 81 – 100 of 264

Showing per page

On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces

Raad J. K. al Lami, Marie Škodová, Josef Mikeš (2006)

Archivum Mathematicum

In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces A n onto (pseudo-) Kählerian spaces K ¯ n . We proved that these spaces A n do not admit nontrivial holomorphically projective mappings onto K ¯ n . These results are a generalization of results by T. Sakaguchi, J. Mikeš and V. V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.

On holomorphically projective mappings of e -Kähler manifolds

Irena Hinterleitner (2012)

Archivum Mathematicum

In this paper we study fundamental equations of holomorphically projective mappings of e -Kähler spaces (i.e. classical, pseudo- and hyperbolic Kähler spaces) with respect to the smoothness class of metrics. We show that holomorphically projective mappings preserve the smoothness class of metrics.

On invariant operations on pseudo-Riemannian manifolds

Jan Slovák (1992)

Commentationes Mathematicae Universitatis Carolinae

Invariant polynomial operators on Riemannian manifolds are well understood and the knowledge of full lists of them becomes an effective tool in Riemannian geometry, [Atiyah, Bott, Patodi, 73] is a very good example. The present short paper is in fact a continuation of [Slovák, 92] where the classification problem is reconsidered under very mild assumptions and still complete classification results are derived even in some non-linear situations. Therefore, we neither repeat the detailed exposition...

On isotropic Berwald metrics

Akbar Tayebi, Behzad Najafi (2012)

Annales Polonici Mathematici

We prove that every isotropic Berwald metric of scalar flag curvature is a Randers metric. We study the relation between an isotropic Berwald metric and a Randers metric which are pointwise projectively related. We show that on constant isotropic Berwald manifolds the notions of R-quadratic and stretch metrics are equivalent. Then we prove that every complete generalized Landsberg manifold with isotropic Berwald curvature reduces to a Berwald manifold. Finally, we study C-conformal changes of isotropic...

On Jacobi fields and a canonical connection in sub-Riemannian geometry

Davide Barilari, Luca Rizzi (2017)

Archivum Mathematicum

In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.

On left invariant CR structures on SU ( 2 )

Andreas Čap (2006)

Archivum Mathematicum

There is a well known one–parameter family of left invariant CR structures on S U ( 2 ) S 3 . We show how purely algebraic methods can be used to explicitly compute the canonical Cartan connections associated to these structures and their curvatures. We also obtain explicit descriptions of tractor bundles and tractor connections.

Currently displaying 81 – 100 of 264