On holonomicity criteria in second order geometry.
Invariant polynomial operators on Riemannian manifolds are well understood and the knowledge of full lists of them becomes an effective tool in Riemannian geometry, [Atiyah, Bott, Patodi, 73] is a very good example. The present short paper is in fact a continuation of [Slovák, 92] where the classification problem is reconsidered under very mild assumptions and still complete classification results are derived even in some non-linear situations. Therefore, we neither repeat the detailed exposition...
The paper explains the notion of projectively equivariant quantization. It gives a sketch of Martin Bordemann's proof of the existence of projectively equivariant quantization on arbitrary manifolds.
We deal with a -tensor field on the tangent bundle preserving vertical vectors and such that is a -tensor field on , where is the canonical almost tangent structure on . A connection on is constructed by . It is shown that if is a -almost complex structure on without torsion then is a unique linear symmetric connection such that and .
Using a general connection Γ on a fibred manifold p:Y → M and a torsion free classical linear connection ∇ on M, we distinguish some “special” fibred coordinate systems on Y, and then we construct a general connection on Fp:FY → FM for any vector bundle functor F: ℳ f → of finite order.