A theorem on metric polynomial structures
We classify the -dimensional compact nilmanifolds that admit abelian complex structures, and for any such complex structure we describe the space of symplectic forms which are compatible with .
Identities for the curvature tensor of the Levi-Cività connection on an almost para-cosymplectic manifold are proved. Elements of harmonic theory for almost product structures are given and a Bochner-type formula for the leaves of the canonical foliation is established.
In this paper we consider the system of Hamiltonian differential equations, which determines small oscillations of a dynamical system with n parameters. We demonstrate that this system determines an affinor structure J on the phase space TRⁿ. If J² = ωI, where ω = ±1,0, the phase space can be considered as the biplanar space of elliptic, hyperbolic or parabolic type. In the Euclidean case (Rⁿ = Eⁿ) we obtain the Hopf bundle and its analogs. The bases of these bundles are, respectively, the projective...
The object of investigations are almost contact B-metric manifolds which are derived as a product of a real line and a 2-dimensional manifold equipped with a complex structure and a Norden metric. There are used two different methods for generation of the B-metric on the product manifold. The constructed manifolds are characterised with respect to the Ganchev–Mihova–Gribachev classification and their basic curvature properties.
It is known that L. Vanhecke, among other geometers, has studied curvature properties both on almost Hermitian and almost contact metric manifolds.The purpose of this paper is to interrelate these properties within the theory of almost contact metric submersions. So, we examine the following problem: Let f: M → B be an almost contact metric submersion. Suppose that the total space is a C(α)-manifold. What curvature properties do have the fibres or the base space?