Displaying 81 – 100 of 729

Showing per page

Basic equations of G -almost geodesic mappings of the second type, which have the property of reciprocity

Mića S. Stanković, Milan L. Zlatanović, Nenad O. Vesić (2015)

Czechoslovak Mathematical Journal

We study G -almost geodesic mappings of the second type θ π 2 ( e ) , θ = 1 , 2 between non-symmetric affine connection spaces. These mappings are a generalization of the second type almost geodesic mappings defined by N. S. Sinyukov (1979). We investigate a special type of these mappings in this paper. We also consider e -structures that generate mappings of type θ π 2 ( e ) , θ = 1 , 2 . For a mapping θ π 2 ( e , F ) , θ = 1 , 2 , we determine the basic equations which generate them.

Bi-Legendrian connections

Beniamino Cappelletti Montano (2005)

Annales Polonici Mathematici

We define the concept of a bi-Legendrian connection associated to a bi-Legendrian structure on an almost -manifold M 2 n + r . Among other things, we compute the torsion of this connection and prove that the curvature vanishes along the leaves of the bi-Legendrian structure. Moreover, we prove that if the bi-Legendrian connection is flat, then the bi-Legendrian structure is locally equivalent to the standard structure on 2 n + r .

Canonical contact forms on spherical CR manifolds

Wei Wang (2003)

Journal of the European Mathematical Society

We construct the CR invariant canonical contact form can ( J ) on scalar positive spherical CR manifold ( M , J ) , which is the CR analogue of canonical metric on locally conformally flat manifold constructed by Habermann and Jost. We also construct another canonical contact form on the Kleinian manifold Ω ( Γ ) / Γ , where Γ is a convex cocompact subgroup of Aut C R S 2 n + 1 = P U ( n + 1 , 1 ) and Ω ( Γ ) is the discontinuity domain of Γ . This contact form can be used to prove that Ω ( Γ ) / Γ is scalar positive (respectively, scalar negative, or scalar vanishing) if and...

Canonical Poisson-Nijenhuis structures on higher order tangent bundles

P. M. Kouotchop Wamba (2014)

Annales Polonici Mathematici

Let M be a smooth manifold of dimension m>0, and denote by S c a n the canonical Nijenhuis tensor on TM. Let Π be a Poisson bivector on M and Π T the complete lift of Π on TM. In a previous paper, we have shown that ( T M , Π T , S c a n ) is a Poisson-Nijenhuis manifold. Recently, the higher order tangent lifts of Poisson manifolds from M to T r M have been studied and some properties were given. Furthermore, the canonical Nijenhuis tensors on T A M are described by A. Cabras and I. Kolář [Arch. Math. (Brno) 38 (2002), 243-257],...

Currently displaying 81 – 100 of 729