Anti-Invariant Submanifolds of Almost Contact Metric Manifolds.
We show that there exist astheno-Kähler structures on Calabi-Eckmann manifolds.
We study -almost geodesic mappings of the second type , between non-symmetric affine connection spaces. These mappings are a generalization of the second type almost geodesic mappings defined by N. S. Sinyukov (1979). We investigate a special type of these mappings in this paper. We also consider -structures that generate mappings of type , . For a mapping , , we determine the basic equations which generate them.
We define the concept of a bi-Legendrian connection associated to a bi-Legendrian structure on an almost -manifold . Among other things, we compute the torsion of this connection and prove that the curvature vanishes along the leaves of the bi-Legendrian structure. Moreover, we prove that if the bi-Legendrian connection is flat, then the bi-Legendrian structure is locally equivalent to the standard structure on .
Si annunciano alcuni risultati relativi agli automorfismi infinitesimali quaternionali, in particolare una formula di tipo Bott che lega i loro zeri con i numeri simplettici di Pontrjagin.
We construct the CR invariant canonical contact form on scalar positive spherical CR manifold , which is the CR analogue of canonical metric on locally conformally flat manifold constructed by Habermann and Jost. We also construct another canonical contact form on the Kleinian manifold , where is a convex cocompact subgroup of and is the discontinuity domain of . This contact form can be used to prove that is scalar positive (respectively, scalar negative, or scalar vanishing) if and...
Let M be a smooth manifold of dimension m>0, and denote by the canonical Nijenhuis tensor on TM. Let Π be a Poisson bivector on M and the complete lift of Π on TM. In a previous paper, we have shown that is a Poisson-Nijenhuis manifold. Recently, the higher order tangent lifts of Poisson manifolds from M to have been studied and some properties were given. Furthermore, the canonical Nijenhuis tensors on are described by A. Cabras and I. Kolář [Arch. Math. (Brno) 38 (2002), 243-257],...
In this paper the Nijenhuis tensor characteristic distributions on a non-integrable four-dimensional almost complex manifold is investigated for integrability, singularities and equivalence.