On the existence of a codimension 1 completely integrable totally geodesic distribution on a pseudo-Riemannian Heisenberg group.
It is proved that there exists a non-semisymmetric pseudosymmetric Kähler manifold of dimension 4.
A Goursat structure on a manifold of dimension is a rank two distribution such that dim , for , where denote the elements of the derived flag of , defined by and . Goursat structures appeared first in the work of von Weber and Cartan, who have shown that on an open and dense subset they can be converted into the so-called Goursat normal form. Later, Goursat structures have been studied by Kumpera and Ruiz. In the paper, we introduce a new local invariant for Goursat structures, called...
A Goursat structure on a manifold of dimension n is a rank two distribution Ɗ such that dim Ɗ(i) = i + 2, for 0 ≤ i ≤ n-2, where Ɗ(i) denote the elements of the derived flag of Ɗ, defined by Ɗ(0) = Ɗ and Ɗ(i+1) = Ɗ(i) + [Ɗ(i),Ɗ(i)] . Goursat structures appeared first in the work of von Weber and Cartan, who have shown that on an open and dense subset they can be converted into the so-called Goursat normal form. Later, Goursat structures have been studied by Kumpera and Ruiz. In the paper, we introduce...
In this paper, firstly we study some left invariant Riemannian metrics on para-hypercomplex 4-dimensional Lie groups. In each Lie group, the Levi-Civita connection and sectional curvature have been given explicitly. We also show these spaces have constant negative scalar curvatures. Then by using left invariant Riemannian metrics introduced in the first part, we construct some left invariant Randers metrics of Berwald type. The explicit formulas for computing flag curvature have been obtained in...
If is a complex surface, one has for each the Hilbert scheme , which is a desingularization of the symmetric product . Here we construct more generally a differentiable variety endowed with a stable almost complex structure, for every almost complex fourfold . is a desingularization of the symmetric product .
Considering the notion of Jacobi type vector fields for a real hypersurface in a complex two-plane Grassmannian, we prove that if a structure vector field is of Jacobi type it is Killing. As a consequence we classify real hypersurfaces whose structure vector field is of Jacobi type.
We introduce a type of non-flat Riemannian manifolds called weakly cyclic Ricci symmetric manifolds and study their geometric properties. The existence of such manifolds is shown by several non-trivial examples.