The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

QCH Kähler manifolds with κ = 0

Włodzimierz Jelonek (2014)

Colloquium Mathematicae

The aim of this paper is to describe all Kähler manifolds with quasi-constant holomorphic sectional curvature with κ = 0.

Quasi-Einstein hypersurfaces in semi-Riemannian space forms

Ryszard Deszcz, Marian Hotloś, Zerrin Sentürk (2001)

Colloquium Mathematicae

We investigate curvature properties of hypersurfaces of a semi-Riemannian space form satisfying R·C = LQ(S,C), which is a curvature condition of pseudosymmetry type. We prove that under some additional assumptions the ambient space of such hypersurfaces must be semi-Euclidean and that they are quasi-Einstein Ricci-semisymmetric manifolds.

Quaternionic contact structures in dimension 7

David Duchemin (2006)

Annales de l’institut Fourier

The conformal infinity of a quaternionic-Kähler metric on a 4 n -manifold with boundary is a codimension 3 distribution on the boundary called quaternionic contact. In dimensions 4 n - 1 greater than 7 , a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7 , we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures...

Currently displaying 1 – 6 of 6

Page 1