Warped Product CR-Submanifolds of Lorentzian -Kenmotsu Manifolds
2000 Mathematics Subject Classification: 53C40, 53C25.In the present note, it is proved that there donot exist warped product semi-slant submanifolds in a Sasakian manifold other than contact CR-warped product submanifolds and thus the results obtained in [8] are generalized.
A consequence of the Riemannian Goldberg-Sachs theorem is the fact that the Kähler form of an Einstein Hermitian surface is an eigenform of the curvature operator. Referring to this property as -Einstein condition we obtain a complete classification of the compact locally homogeneous -Einstein Hermitian surfaces. We also provide large families of non-homogeneous -Einstein (but non-Einstein) Hermitian metrics on , , and on the product surface of two curves and whose genuses are greater...
Translation surfaces in the Galilean 3-space G3 have two types according to the isotropic and non-isotropic plane curves. In this paper, we study a translation surface in G3 with a log-linear density and classify such a surface with vanishing weighted mean curvature.
We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein-Weyl structure. Moreover, we investigate the Einstein-Weyl structure of canonical variations of the total space with Einstein-Weyl structure.
A submanifold of a generalized Sasakian-space-form is said to be -totally real submanifold if and for all . In particular, if , then is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten-van Kampen connection and Tanaka-Webster connection.