On Hamiltonian submanifolds.
We will prove that if an open subset of is isometrically immersed into , with , then the image is totally geodesic. We will also prove that if an open subset of isometrically immersed into , with , then the image is totally geodesic.
We give a pinching theorem for a compact minimal generic submanifold with flat normal connection immersed in an odd-dimensional sphere with standard Sasakian structure.
Elastica and inextensible flows of curves play an important role in practical applications. In this paper, we construct a new characterization of inextensible flows by using elastica in space. The inextensible flow is completely determined for any space-like curve in de Sitter space [...] S 1 3 . Finally, we give some characterizations for curvatures of a space-like curve in de Sitter space [...] S 1 3 .
Many authors have studied the geometry of submanifolds of Kaehlerian and Sasakian manifolds. On the other hand, David E. Blair has initiated the study of S-manifolds, which reduce, in particular cases, to Sasakian manifolds ([1, 2]). I. Mihai ([8]) and L. Ornea ([9]) have investigated CR-submanifolds of S-manifolds. The purpose of the present paper is to study a special kind of such submanifolds, namely the normal CR-submanifolds. In Sections 1 and 2, we review basic formulas and definitions for...
We show that any real Kähler Euclidean submanifold with either non-negative Ricci curvature or non-negative holomorphic sectional curvature has index of relative nullity greater than or equal to . Moreover, if equality holds everywhere, then the submanifold must be a product of Euclidean hypersurfaces almost everywhere, and the splitting is global provided that is complete. In particular, we conclude that the only real Kähler submanifolds in that have either positive Ricci curvature or...