-Capacity and -Hyperbolicity of Submanifolds.
Page 1
M. Holopainen, S. Markvorsen, V. Palmer (2009)
Revista Matemática Iberoamericana
Wegner, Bernd (1997)
General Mathematics
Kazumi Tsukada (1985)
Mathematische Zeitschrift
Stere Ianuş, Stefano Marchiafava, Gabriel Vîlcu (2010)
Open Mathematics
In this paper we introduce paraquaternionic CR-submanifolds of almost paraquaternionic hermitian manifolds and state some basic results on their differential geometry. We also study a class of semi-Riemannian submersions from paraquaternionic CR-submanifolds of paraquaternionic Kähler manifolds.
Misha Gromov (2014)
Open Mathematics
We study/construct (proper and non-proper) Morse functions f on complete Riemannian manifolds X such that the hypersurfaces f(x) = t for all −∞ < t < +∞ have positive mean curvatures at all non-critical points x ∈ X of f. We show, for instance, that if X admits no such (not necessarily proper) function, then it contains a (possibly, singular) complete (possibly, compact) minimal hypersurface of finite volume.
Hervé Pajot (2006/2007)
Séminaire de théorie spectrale et géométrie
Soit la métrique riemannienne standard sur et soit une déformation conforme lisse de . Nous présentons une condition suffisante en terme de -courbure pour que la variété se plonge de façon bilipschitzienne, en tant qu’espace métrique, dans . Ce théorème du à Bonk, Heinonen et Saksman découle d’un résultat lié au problème du jacobien quasiconforme.
Abatangelo, L.Maria, Dragomir, Sorin (1990)
International Journal of Mathematics and Mathematical Sciences
Dirk Ferus (1974)
Mathematische Annalen
Craveiro de Carvalho, F.J. (1988)
Portugaliae mathematica
Krishnendu De, Uday Chand De (2016)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
The object of the present paper is to study -projectively flat and -projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.
Dal Lago, Walter, García, Alicia, Sánchez, Cristián U. (1998)
Journal of Lie Theory
Koji Matsuo (2007)
Colloquium Mathematicae
Let M̃ be an (m+r)-dimensional locally conformal Kähler (l.c.K.) manifold and let M be an m-dimensional l.c.K. submanifold of M̃ (i.e., a complex submanifold with the induced l.c.K. structure). Assume that both M̃ and M are pseudo-Bochner-flat. We prove that if r < m, then M is totally geodesic (in the Hermitian sense) in M̃. This is the l.c.K. version of Iwatani's result for Bochner-flat Kähler submanifolds.
Asperti, Antonio C., Lobos, Guillermo A., Mercuri, Francesco (2002)
Advances in Geometry
Cao, Xi-Fang (2001)
Balkan Journal of Geometry and its Applications (BJGA)
Page 1