Decktransformationen transnormaler Mannigfaltigkeiten.
Nous étudions l’ensemble Conf des immersions conformes entre deux variétés pseudo-riemanniennes et . Nous caractérisons notamment l’adhérence de Conf dans l’espace des applications continues , et décrivons quelques propriétés géométriques de lorsque cette adhérence est non triviale.
In this note we compute the sectional curvature for the Bergman metric of the Cartan domain of type IV and we give a classification of complex totally geodesic manifolds for this metric.
Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C 2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C 0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry,...
We establish sharp inequalities for C-totally real doubly warped product submanifolds in (κ,μ)-contact space forms and in non-Sasakian (κ,μ)-contact metric manifolds.