Complete minimal surfaces with index one and stable constant mean curvature surfaces.
Antonio Ros, Francisco J. Lopez (1989)
Commentarii mathematici Helvetici
Michael T. Anderson (1982)
Inventiones mathematicae
Hai-Ping Fu (2016)
Annales Polonici Mathematici
Let Mⁿ (n ≥ 3) be an n-dimensional complete super stable minimal submanifold in with flat normal bundle. We prove that if the second fundamental form A of M satisfies , where α ∈ [2(1 - √(2/n)), 2(1 + √(2/n))], then M is an affine n-dimensional plane. In particular, if n ≤ 8 and , d = 1,3, then M is an affine n-dimensional plane. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite -norm curvature in ℝ⁷ are considered.
Marcos Dajczer, Lucio Rodríguez (1991)
Journal für die reine und angewandte Mathematik
Schi Chang Shu (2008)
Archivum Mathematicum
In this paper, we characterize the -dimensional complete spacelike hypersurfaces in a de Sitter space with constant scalar curvature and with two distinct principal curvatures one of which is simple.We show that is a locus of moving -dimensional submanifold , along the principal curvature of multiplicity is constant and is umbilical in and is contained in an -dimensional sphere and is of constant curvature ,where is the arc length of an orthogonal trajectory of the family...
Liu, X. (2001)
Acta Mathematica Universitatis Comenianae. New Series
K. Abe, M.A. Magid (1989)
Monatshefte für Mathematik
Renyi Ma (1998)
Manuscripta mathematica
Henrik Karstoft (1992)
Mathematica Scandinavica
Abedi, Esmaiel (2010)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Marco L. A. Velásquez, André F. A. Ramalho, Henrique F. de Lima, Márcio S. Santos, Arlandson M. S. Oliveira (2021)
Commentationes Mathematicae Universitatis Carolinae
In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold endowed with a weight function and having a closed conformal Killing vector field with conformal factor , that is, graphs constructed through the flow generated by and which are defined over an integral leaf of the foliation orthogonal to . For such graphs, we establish some rigidity results under appropriate constraints on the -mean curvature. Afterwards, we obtain some stability results...
Dirk Ferus, Ulrich Pinkall (1988/1989)
Mathematische Zeitschrift
Chen, Bang-Yen, Garay, Oscar J. (2003)
International Journal of Mathematics and Mathematical Sciences
López, Rafael (2006)
Divulgaciones Matemáticas
Nikolaos Kapouleas (1995)
Inventiones mathematicae
Jost-Hinrich Eschenburg, Renato de Azevedo Tribuzy (1988)
Rendiconti del Seminario Matematico della Università di Padova
Rossman, Wayne, Sato, Katsunori (1998)
Experimental Mathematics
U. Abresch (1987)
Journal für die reine und angewandte Mathematik
Rolf Walter (1989)
Manuscripta mathematica
Luis J. Alías, J. Miguel Malacarne (2002)
Revista Matemática Iberoamericana
It is still an open question whether a compact embedded hypersurface in the Euclidean space with constant mean curvature and spherical boundary is necessarily a hyperplanar ba1l or a spherical cap, even in the simplest case of a compact constant mean curvature surface in R3 bounded by a circle. In this paper we prove that this is true for the case of the scalar curvature. Specifica1ly we prove that the only compact embedded hypersurfaces in the Euclidean space with constant scalar curvature and...