Natural tensor fields of type on the tangent and cotangent bundles of a semi-Riemannian manifold
Let be a differentiable manifold with a pseudo-Riemannian metric and a linear symmetric connection . We classify all natural (in the sense of [KMS]) 0-order vector fields and 2-vector fields on generated by and . We get that all natural vector fields are of the form where is the vertical lift of , is the horizontal lift of with respect to , and are smooth real functions defined on . All natural 2-vector fields are of the form where , are smooth real functions defined...
In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space , that is, complete hypersurfaces of whose mean curvature and normalized scalar curvature satisfy for some , . In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of . Furthermore, a rigidity result...
We study the first eigenvalue of the Jacobi operator on closed hypersurfaces with constant mean curvature in non-flat Riemannian space forms. Under an appropriate constraint on the totally umbilical tensor of the hypersurfaces and following Meléndez's ideas in J. Meléndez (2014) we obtain a new sharp upper bound of the first eigenvalue of the Jacobi operator.
We derive the equations of Gauss and Weingarten for a non-degenerate hypersurface of a semi-Riemannian manifold admitting a semi-symmetric metric connection, and give some corollaries of these equations. In addition, we obtain the equations of Gauss curvature and Codazzi-Mainardi for this non-degenerate hypersurface and give a relation between the Ricci and the scalar curvatures of a semi-Riemannian manifold and of its a non-degenerate hypersurface with respect to a semi-symmetric metric connection....