Page 1 Next

Displaying 1 – 20 of 83

Showing per page

Scalar differential invariants of symplectic Monge-Ampère equations

Alessandro Paris, Alexandre Vinogradov (2011)

Open Mathematics

All second order scalar differential invariants of symplectic hyperbolic and elliptic Monge-Ampère equations with respect to symplectomorphisms are explicitly computed. In particular, it is shown that the number of independent second order invariants is equal to 7, in sharp contrast with general Monge-Ampère equations for which this number is equal to 2. We also introduce a series of invariant differential forms and vector fields which allow us to construct numerous scalar differential invariants...

Self-Similarity of Poisson structures on tori

Kentaro Mikami, Alan Weinstein (2000)

Banach Center Publications

We study the group of diffeomorphisms of a 3-dimensional Poisson torus which preserve the Poisson structure up to a constant multiplier, and the group of similarity ratios.

Singular Poisson reduction of cotangent bundles.

Simon Hochgerner, Armin Rainer (2006)

Revista Matemática Complutense

We consider the Poisson reduced space (T* Q)/K, where the action of the compact Lie group K on the configuration manifold Q is of single orbit type and is cotangent lifted to T* Q. Realizing (T* Q)/K as a Weinstein space we determine the induced Poisson structure and its symplectic leaves. We thus extend the Weinstein construction for principal fiber bundles to the case of surjective Riemannian submersions Q → Q/K which are of single orbit type.

Singular Poisson-Kähler geometry of certain adjoint quotients

Johannes Huebschmann (2007)

Banach Center Publications

The Kähler quotient of a complex reductive Lie group relative to the conjugation action carries a complex algebraic stratified Kähler structure which reflects the geometry of the group. For the group SL(n,ℂ), we interpret the resulting singular Poisson-Kähler geometry of the quotient in terms of complex discriminant varieties and variants thereof.

Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry

Constantin Călin, Mircea Crasmareanu (2014)

Czechoslovak Mathematical Journal

We study Legendre and slant curves for Bianchi-Cartan-Vranceanu metrics. These curves are characterized through the scalar product between the normal at the curve and the vertical vector field and in the helix case they have a proper (non-harmonic) mean curvature vector field. The general expression of the curvature and torsion of these curves and the associated Lancret invariant (for the slant case) are computed as well as the corresponding variant for some particular cases. The slant (particularly...

Currently displaying 1 – 20 of 83

Page 1 Next