Displaying 41 – 60 of 153

Showing per page

A new Lindelöf space with points G δ

Alan S. Dow (2015)

Commentationes Mathematicae Universitatis Carolinae

We prove that * implies there is a zero-dimensional Hausdorff Lindelöf space of cardinality 2 1 which has points G δ . In addition, this space has the property that it need not be Lindelöf after countably closed forcing.

A non-metrizable collectionwise Hausdorff tree with no uncountable chains and no Aronszajn subtrees

Akira Iwasa, Peter J. Nyikos (2006)

Commentationes Mathematicae Universitatis Carolinae

It is independent of the usual (ZFC) axioms of set theory whether every collectionwise Hausdorff tree is either metrizable or has an uncountable chain. We show that even if we add “or has an Aronszajn subtree,” the statement remains ZFC-independent. This is done by constructing a tree as in the title, using the set-theoretic hypothesis * , which holds in Gödel’s Constructible Universe.

A note on condensations of C p ( X ) onto compacta

Aleksander V. Arhangel'skii, Oleg I. Pavlov (2002)

Commentationes Mathematicae Universitatis Carolinae

A condensation is a one-to-one continuous mapping onto. It is shown that the space C p ( X ) of real-valued continuous functions on X in the topology of pointwise convergence very often cannot be condensed onto a compact Hausdorff space. In particular, this is so for any non-metrizable Eberlein compactum X (Theorem 19). However, there exists a non-metrizable compactum X such that C p ( X ) condenses onto a metrizable compactum (Theorem 10). Several curious open problems are formulated.

A note on discrete sets

Santi Spadaro (2009)

Commentationes Mathematicae Universitatis Carolinae

We give several partial positive answers to a question of Juhász and Szentmiklóssy regarding the minimum number of discrete sets required to cover a compact space. We study the relationship between the size of discrete sets, free sequences and their closures with the cardinality of a Hausdorff space, improving known results in the literature.

A note on pseudobounded paratopological groups

Fucai Lin, Shou Lin, Iván Sánchez (2014)

Topological Algebra and its Applications

Let G be a paratopological group. Then G is said to be pseudobounded (resp. ω-pseudobounded) if for every neighbourhood V of the identity e in G, there exists a natural number n such that G = Vn (resp.we have G = ∪ n∈N Vn). We show that every feebly compact (2-pseudocompact) pseudobounded (ω-pseudobounded) premeager paratopological group is a topological group. Also,we prove that if G is a totally ω-pseudobounded paratopological group such that G is a Lusin space, then is G a topological group....

Currently displaying 41 – 60 of 153