A note on Raghavan-Reilly's pairwise paracompactness.
A space is splittable over a space (or splits over ) if for every there exists a continuous map with . We prove that any -dimensional polyhedron splits over but not necessarily over . It is established that if a metrizable compact splits over , then . An example of -dimensional compact space which does not split over is given.
In this note we first give a summary that on property of a remainder of a non-locally compact topological group in a compactification makes the remainder and the topological group all separable and metrizable. If a non-locally compact topological group has a compactification such that the remainder of belongs to , then and are separable and metrizable, where is a class of spaces which satisfies the following conditions: (1) if , then every compact subset of the space is a...
In this paper we introduce a new class of functions called weakly -closed functions with the help of generalized topology which was introduced by Á. Császár. Several characterizations and some basic properties of such functions are obtained. The connections between these functions and some other similar types of functions are given. Finally some comparisons between different weakly closed functions are discussed. This weakly -closed functions enable us to facilitate the formulation of certain...
On the set of real numbers we consider a poset (by inclusion) of topologies , where , such that iff . The poset has the minimal element , the Euclidean topology, and the maximal element , the Sorgenfrey topology. We are interested when two topologies and (especially, for ) from the poset define homeomorphic spaces and . In particular, we prove that for a closed subset of the space is homeomorphic to the Sorgenfrey line iff is countable. We study also common properties...