Displaying 121 – 140 of 258

Showing per page

On p -sequential p -compact spaces

Salvador García-Ferreira, Angel Tamariz-Mascarúa (1993)

Commentationes Mathematicae Universitatis Carolinae

It is shown that a space X is L ( μ p ) -Weakly Fréchet-Urysohn for p ω * iff it is L ( ν p ) -Weakly Fréchet-Urysohn for arbitrary μ , ν < ω 1 , where μ p is the μ -th left power of p and L ( q ) = { μ q : μ < ω 1 } for q ω * . We also prove that for p -compact spaces, p -sequentiality and the property of being a L ( ν p ) -Weakly Fréchet-Urysohn space with ν < ω 1 , are equivalent; consequently if X is p -compact and ν < ω 1 , then X is p -sequential iff X is ν p -sequential (Boldjiev and Malyhin gave, for each P -point p ω * , an example of a compact space X p which is 2 p -Fréchet-Urysohn and it is...

On powers of Lindelöf spaces

Isaac Gorelic (1994)

Commentationes Mathematicae Universitatis Carolinae

We present a forcing construction of a Hausdorff zero-dimensional Lindelöf space X whose square X 2 is again Lindelöf but its cube X 3 has a closed discrete subspace of size 𝔠 + , hence the Lindelöf degree L ( X 3 ) = 𝔠 + . In our model the Continuum Hypothesis holds true. After that we give a description of a forcing notion to get a space X such that L ( X n ) = 0 for all positive integers n , but L ( X 0 ) = 𝔠 + = 2 .

On pseudo-radial spaces

Aleksander V. Arhangel'skii, Romano Isler, Gino Tironi (1986)

Commentationes Mathematicae Universitatis Carolinae

On quasi-p-bounded subsets

M. Sanchis, A. Tamariz-Mascarúa (1999)

Colloquium Mathematicae

The notion of quasi-p-boundedness for p ∈ ω * is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in ω * can be defined in terms of quasi-p-pseudocompactness. For p ∈ ω * , we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × P R K ( p ) is bounded in X × P R K ( p ) , if and only if c l β ( X × P R K ( p ) ) ( B × P R K ( p ) ) = c l β X B × β ( ω ) , where P R K ( p ) is the set of Rudin-Keisler predecessors of p.

Currently displaying 121 – 140 of 258