Displaying 21 – 40 of 86

Showing per page

Embedding a topological group into a connected group

Ryo Ohashi (2007)

Colloquium Mathematicae

It was proved in [HM] that each topological group (G,·,τ) may be embedded into a connected topological group (Ĝ,•,τ̂). In fact, two methods of introducing τ̂ were given. In this note we show relations between them.

Embedding into discretely absolutely star-Lindelöf spaces

Yan-Kui Song (2007)

Commentationes Mathematicae Universitatis Carolinae

A space X is discretely absolutely star-Lindelöf if for every open cover 𝒰 of X and every dense subset D of X , there exists a countable subset F of D such that F is discrete closed in X and St ( F , 𝒰 ) = X , where St ( F , 𝒰 ) = { U 𝒰 : U F } . We show that every Hausdorff star-Lindelöf space can be represented in a Hausdorff discretely absolutely star-Lindelöf space as a closed subspace.

Isometric Embeddings of Pro-Euclidean Spaces

Barry Minemyer (2015)

Analysis and Geometry in Metric Spaces

In [12] Petrunin proves that a compact metric space X admits an intrinsic isometry into En if and only if X is a pro-Euclidean space of rank at most n, meaning that X can be written as a “nice” inverse limit of polyhedra. He also shows that either case implies that X has covering dimension at most n. The purpose of this paper is to extend these results to include both embeddings and spaces which are proper instead of compact. The main result of this paper is that any pro-Euclidean space of rank...

More on ordinals in topological groups

Aleksander V. Arhangel'skii, Raushan Z. Buzyakova (2008)

Commentationes Mathematicae Universitatis Carolinae

Let τ be an uncountable regular cardinal and G a T 1 topological group. We prove the following statements: (1) If τ is homeomorphic to a closed subspace of G , G is Abelian, and the order of every non-neutral element of G is greater than 5 then τ × τ embeds in G as a closed subspace. (2) If G is Abelian, algebraically generated by τ G , and the order of every element does not exceed 3 then τ × τ is not embeddable in G . (3) There exists an Abelian topological group H such that ω 1 is homeomorphic to a closed subspace...

Currently displaying 21 – 40 of 86