Displaying 81 – 100 of 225

Showing per page

Hyperspaces of CW-complexes

Bao-Lin Guo, Katsuro Sakai (1993)

Fundamenta Mathematicae

It is shown that the hyperspace of a connected CW-complex is an absolute retract for stratifiable spaces, where the hyperspace is the space of non-empty compact (connected) sets with the Vietoris topology.

Inverse Sequences and Absolute Co-Extensors

Ivan Ivanšić, Leonard R. Rubin (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Suppose that K is a CW-complex, X is an inverse sequence of stratifiable spaces, and X = limX. Using the concept of semi-sequence, we provide a necessary and sufficient condition for X to be an absolute co-extensor for K in terms of the inverse sequence X and without recourse to any specific properties of its limit. To say that X is an absolute co-extensor for K is the same as saying that K is an absolute extensor for X, i.e., that each map f:A → K from a closed subset A of X extends to a map F:X...

Local cohomological properties of homogeneous ANR compacta

V. Valov (2016)

Fundamenta Mathematicae

In accordance with the Bing-Borsuk conjecture, we show that if X is an n-dimensional homogeneous metric ANR continuum and x ∈ X, then there is a local basis at x consisting of connected open sets U such that the cohomological properties of Ū and bd U are similar to the properties of the closed ball ⁿ ⊂ ℝⁿ and its boundary n - 1 . We also prove that a metric ANR compactum X of dimension n is dimensionally full-valued if and only if the group Hₙ(X,X∖x;ℤ) is not trivial for some x ∈ X. This implies that...

Locally admissible multi-valued maps

Mirosław Ślosarski (2011)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we generalize the class of admissible mappings as due by L. Górniewicz in 1976. Namely we define the notion of locally admissible mappings. Some properties and applications to the fixed point problem are presented.

Locallyn-Connected Compacta and UV n -Maps

V. Valov (2015)

Analysis and Geometry in Metric Spaces

We provide a machinery for transferring some properties of metrizable ANR-spaces to metrizable LCn-spaces. As a result, we show that for completely metrizable spaces the properties ALCn, LCn and WLCn coincide to each other. We also provide the following spectral characterizations of ALCn and celllike compacta: A compactum X is ALCn if and only if X is the limit space of a σ-complete inverse system S = {Xα , pβ α , α < β < τ} consisting of compact metrizable LCn-spaces Xα such that all bonding...

Currently displaying 81 – 100 of 225