Displaying 21 – 40 of 63

Showing per page

Entropy-minimality.

Coven, E.M., Smítal, J. (1993)

Acta Mathematica Universitatis Comenianae. New Series

Interaction between cellularity of Alexandroff spaces and entropy of generalized shift maps

Fatemah Ayatollah Zadeh Shirazi, Sahar Karimzadeh Dolatabad, Sara Shamloo (2016)

Commentationes Mathematicae Universitatis Carolinae

In the following text for a discrete finite nonempty set K and a self-map ϕ : X X we investigate interaction between different entropies of generalized shift σ ϕ : K X K X , ( x α ) α X ( x ϕ ( α ) ) α X and cellularities of some Alexandroff topologies on X .

Kac’s chaos and Kac’s program

Stéphane Mischler (2012/2013)

Séminaire Laurent Schwartz — EDP et applications

In this note I present the main results about the quantitative and qualitative propagation of chaos for the Boltzmann-Kac system obtained in collaboration with C. Mouhot in [33] which gives a possible answer to some questions formulated by Kac in [25]. We also present some related recent results about Kac’s chaos and Kac’s program obtained in [34, 23, 13] by K. Carrapatoso, M. Hauray, C. Mouhot, B. Wennberg and myself.

Minimal self-joinings and positive topological entropy II

François Blanchard, Jan Kwiatkowski (1998)

Studia Mathematica

An effective construction of positive-entropy almost one-to-one topological extensions of the Chacón flow is given. These extensions have the property of almost minimal power joinings. For each possible value of entropy there are uncountably many pairwise non-conjugate such extensions.

Currently displaying 21 – 40 of 63