On resolvable spaces and groups
It is proved that every uncountable -bounded group and every homogeneous space containing a convergent sequence are resolvable. We find some conditions for a topological group topology to be irresolvable and maximal.
It is proved that every uncountable -bounded group and every homogeneous space containing a convergent sequence are resolvable. We find some conditions for a topological group topology to be irresolvable and maximal.
We shall prove that under CH every regular meta-Lindelöf -space which is locally has the -property. In addition, we shall prove that a regular submeta-Lindelöf -space is if it is locally and has locally extent at most . Moreover, these results can be extended from the class of locally -spaces to the wider class of -scattered spaces. Also, we shall give a direct proof (without using topological games) of the result shown by Peng [On spaces which are D, linearly D and transitively D, Topology...
We prove a number of results on star covering properties which may be regarded as either generalizations or specializations of topological properties related to the ones mentioned in the title of the paper. For instance, we give a new, entirely combinatorial proof of the fact that -spaces constructed from infinite almost disjoint families are not star-compact. By going a little further we conclude that if is a star-compact space within a certain class, then is neither first countable nor separable....
A space is -starcompact if for every open cover of there exists a countably compact subset of such that In this paper we investigate the relations between -starcompact spaces and other related spaces, and also study topological properties of -starcompact spaces.
A space is -starcompact if for every open cover of there exists a Lindelöf subset of such that We clarify the relations between -starcompact spaces and other related spaces and investigate topological properties of -starcompact spaces. A question of Hiremath is answered.