Displaying 21 – 40 of 54

Showing per page

Mesocompactness and selection theory

Peng-fei Yan, Zhongqiang Yang (2012)

Commentationes Mathematicae Universitatis Carolinae

A topological space X is called mesocompact (sequentially mesocompact) if for every open cover 𝒰 of X , there exists an open refinement 𝒱 of 𝒰 such that { V 𝒱 : V K } is finite for every compact set (converging sequence including its limit point) K in X . In this paper, we give some characterizations of mesocompact (sequentially mesocompact) spaces using selection theory.

Metric-fine uniform frames

Joanne L. Walters-Wayland (1998)

Commentationes Mathematicae Universitatis Carolinae

A locallic version of Hager’s metric-fine spaces is presented. A general definition of 𝒜 -fineness is given and various special cases are considered, notably 𝒜 = all metric frames, 𝒜 = complete metric frames. Their interactions with each other, quotients, separability, completion and other topological properties are discussed.

Metrization criteria for compact groups in terms of their dense subgroups

Dikran Dikranjan, Dmitri Shakhmatov (2013)

Fundamenta Mathematicae

According to Comfort, Raczkowski and Trigos-Arrieta, a dense subgroup D of a compact abelian group G determines G if the restriction homomorphism Ĝ → D̂ of the dual groups is a topological isomorphism. We introduce four conditions on D that are necessary for it to determine G and we resolve the following question: If one of these conditions holds for every dense (or G δ -dense) subgroup D of G, must G be metrizable? In particular, we prove (in ZFC) that a compact abelian group determined by all its...

Minimal K C -spaces are countably compact

Theodoros Vidalis (2004)

Commentationes Mathematicae Universitatis Carolinae

In this paper we show that a minimal space in which compact subsets are closed is countably compact. This answers a question posed in [1].

Monomorphisms in spaces with Lindelöf filters

Richard N. Ball, Anthony W. Hager (2007)

Czechoslovak Mathematical Journal

𝐒𝐩𝐅𝐢 is the category of spaces with filters: an object is a pair ( X , ) , X a compact Hausdorff space and a filter of dense open subsets of X . A morphism f ( Y , 𝒢 ) ( X , ) is a continuous function f Y X for which f - 1 ( F ) 𝒢 whenever F . This category arises naturally from considerations in ordered algebra, e.g., Boolean algebra, lattice-ordered groups and rings, and from considerations in general topology, e.g., the theory of the absolute and other covers, locales, and frames, though we shall specifically address only one of these...

Monotone meta-Lindelöf spaces

Yin-Zhu Gao, Wei-Xue Shi (2009)

Czechoslovak Mathematical Journal

In this paper, we study the monotone meta-Lindelöf property. Relationships between monotone meta-Lindelöf spaces and other spaces are investigated. Behaviors of monotone meta-Lindelöf G O -spaces in their linearly ordered extensions are revealed.

Monotone normality and extension of functions

Ian Stares (1995)

Commentationes Mathematicae Universitatis Carolinae

We provide a characterisation of monotone normality with an analogue of the Tietze-Urysohn theorem for monotonically normal spaces as well as answer a question due to San-ou concerning the extension of Urysohn functions in monotonically normal spaces. We also extend a result of van Douwen, giving a characterisation of K 0 -spaces in terms of semi-continuous functions, as well as answer another question of San-ou concerning semi-continuous Urysohn functions.

Monotone weak Lindelöfness

Maddalena Bonanzinga, Filippo Cammaroto, Bruno Pansera (2011)

Open Mathematics

The definition of monotone weak Lindelöfness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelöf if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) ∪r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelöf spaces are given and some basic properties such as the behavior with respect to products and subspaces...

Currently displaying 21 – 40 of 54