Monotonically normal -separable spaces may not be perfect
A topological space is said to be -separable if has a -closed-discrete dense subset. Recently, G. Gruenhage and D. Lutzer showed that -separable PIGO spaces are perfect and asked if -separable monotonically normal spaces are perfect in general. The main purpose of this article is to provide examples of -separable monotonically normal spaces which are not perfect. Extremely normal -separable spaces are shown to be stratifiable.